一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于悬浮滑移式电荷自激励的摩擦纳米发电机的制作方法

2021-10-24 13:41:00 来源:中国专利 TAG:发电机 滑移 电荷 悬浮 纳米


1.本发明涉及发电机技术领域,特别涉及一种基于悬浮滑移式电荷自激励的摩擦纳米发电机。


背景技术:

2.分布式能源的应用引起了世界各国的广泛关注。摩擦电纳米发电机(teng)基于摩擦带电和静电感应的耦合效应,被证明是一种更有效的分布式能量收集策略,如在人体运动、微风、振动等机械能的收集中,可以为个人/小型电子设备提供能量。由于teng具有成本低、结构简单、材料多样、灵活性和适应性强等突出优点,目前在生物传感、人工智能、高压应用和蓝色能源等方面展现出巨大的应用潜力。
3.teng在走向实际应用和商业化的进程中,很大程度上受制与较低的输出功率,而teng的输出功率与其摩擦面电荷密度成二次正比关系。针对滑移式teng,接触摩擦会导致摩擦面热损失和磨损,从而降低teng的表面电荷密度,影响其输出性能。一般是通过添加界面润滑油以延缓磨损,但不能有效的避免,且驱动力增大,不利于微能量的收集。非接触的悬浮滑移模式teng具有很高的耐久性和几乎100%的理论转换效率(摩擦损失为零),可以轻松获取轻微的运动能量,显示了teng在商业过程中最大的潜力。然而,非接触模式teng的感应介质层上预先存在的电荷会快速衰减,导致非常小的输出,因此需要通过电荷补充、模式自动转换等方法使非接触teng的电荷密度和输出功率有了明显的提高,但其目前的电输出到实现实际应用要求之间仍然是一个很大的挑战。因此,有必要发明一种具有高耐久性和高输出性能的新结构摩擦纳米发电机,实现更广泛和更有效的微能量收集与应用。


技术实现要素:

4.针对现有技术中摩擦发电机耐久性和输出功率较低的问题,本发明提出一种基于悬浮滑移式电荷自激励的摩擦纳米发电机,通过动子电极与定子电极之间的正反馈实现输出电荷连续自增以提高输出功率,同时通过悬浮结构设计,有效避免接触磨损问题,延长器件的使用寿命。
5.为了实现上述目的,本发明提供以下技术方案:
6.一种基于悬浮滑移式电荷自激励的摩擦纳米发电机,包括具有teng和电荷自激励系统,所述电荷自激励系统用于产生激励电压,从而使teng电荷累积;所述teng包括定子和动子,定子和动子之间存在空气间隙;定子的输出端与电荷自激励系统的输入端连接,电荷自激励系统的输出端与动子的输入端连接。
7.优选的,所述动子包括第一硬质基板1、第一绝缘介电膜2和金属感应电极3,第一绝缘介电膜1和金属感应电极3分别设置在第一硬质基板1的下表面且第一绝缘介电膜2和金属感应电极3之间有间隙,金属感应电极3的下表面还覆盖有第二绝缘介电膜4。
8.优选的,所述第一绝缘介电膜2采用驻极体材料,第二绝缘介电膜4采用尼龙膜。
9.优选的,第二绝缘介电膜4的尺寸大于金属感应电极3的尺寸。
10.优选的,所述定子包括第二硬质基板8、第一电极6、第二电极7和第三绝缘介电膜5,第一电极6、第二电极7分别设置第二硬质基板8的上表面,第一电极6、第二电极7的上表面覆盖有第三绝缘介电膜5。
11.优选的,所述第三绝缘介电膜5采用尼龙膜。
12.优选的,所述电荷自激励系统包括串联的自倍压整流电路和耐高压的整流二极管,自倍压整流电路的具体电路为:
13.定子上的第一电极通过第一输入端与第一电容的一端连接,定子上的第二电极通过第二输入端分别与第一二极管的正极和第四电容的一端连接,第一二极管的负极和第一电容的另一端并联后分别与第二二极管的正极和第二电容的一端连接,第二二极管的负极和第四电容的另一端并联后分别与第三二极管的正极和第五电容的一端连接,第三二极管的负极和第二电容的另一端并联后分别和第四二极管的正极和第三电容的一端连接,第四二极管的负极和第五电容的另一端并联后与第五二极管的正极连接,第五二极管的负极和第三电容的另一端并联后与整流二极管的正极连接,整流二极管的负极连接输出端。
14.优选的,所述电荷自激励系统产生的激励电压与teng电荷累积q的关系如下:
[0015][0016]
公式(1)中,q表示teng的电荷累积;d1是第二绝缘介质膜和第三绝缘介质膜之间的距离,ε0是真空介电常数;s是动子上金属感应电极的面积,v
e
表示电荷自激励系统产生的激励电压。
[0017]
优选的,teng电荷累积最大电荷密度q
max
满足:
[0018][0019]
公式(2)中,p表示气体的压强;d2是定子上的第二电极和动子上的金属感应电极之间的距离;ε0是真空介电常数;s是动子上金属感应电极的面积;a和b是由气体的组成成分和压强决定的常数,标准大气压为101kpa时,a为2.87
×
105v(atm
·
m)
‑1,b为12.6。
[0020]
优选的,所述定子和动子之间的排列方式包括绕圆周放射性排列、直线排列或者曲线排列,形成可以收集转动或者滑动能量的摩擦纳米发电机。
[0021]
综上所述,由于采用了上述技术方案,与现有技术相比,本发明至少具有以下有益效果:
[0022]
本发明的悬浮滑移式电荷自激励摩擦发电机设计新颖合理,结构简单、成本低、适用场景广。采用悬浮滑移式结构和自倍压整流电路设计的结合,使得发电机能快速的产生高激励电压和快速的电荷累积;电极表面的绝缘介电膜能有效的减小电极上电荷的衰减和避免空气击穿,实现较大的能量输出。
[0023]
由于悬浮结构设计,极大地减小了接触摩擦阻力,提高了能量转化效率,且介质膜表面没有任何磨损,最大限度地延长发电机的使用寿命。动子和定子的设计灵活可变,可以变形为转动式,用于直接收集转动能量,且电极数量和尺寸均可调整以实现不同的需求。悬浮滑移式电荷自激励摩擦发电机在正常环境中能够有效的收集环境中的微风能量,在驱动电子设备和自供能系统等方面具有一定潜力。
附图说明:
[0024]
图1为根据本发明示例性实施例的一种基于悬浮滑移式电荷自激励的摩擦纳米发电机结构示意图。
[0025]
图2为根据本发明示例性实施例的电荷自激励系统电路示意图。
[0026]
图3为根据本发明示例性实施例的一种基于悬浮滑移式电荷自激励的摩擦纳米发电机工作电荷积累示意图。
[0027]
图4为根据本发明示例性实施例的一种基于空间电荷积累的摩擦发电机不同工作情况下动态输出电荷密度曲线对比示意图。
[0028]
图5为根据本发明示例性实施例的转动式发电机结构俯视示意图。
[0029]
图6为根据本发明示例性实施例的一种基于空间电荷积累的摩擦发电机输出性能示意图。
[0030]
图7为根据本发明示例性实施例的一种基于空间电荷积累的摩擦发电机在不同风速驱动下的电荷输出情况。
具体实施方式
[0031]
下面结合实施例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
[0032]
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
[0033]
如图1所示,本发明提供一种基于悬浮滑移式电荷自激励的摩擦纳米发电机,包括具有电荷积累电极的悬浮滑移式teng和电荷自激励系统。
[0034]
其中,teng包括动子和定子,动子是相对于定子滑动,定子可以固定和运动,转子和定子互相配合,利用静电感应效应产生交流电输出,为负载提供电能。
[0035]
定子和动子的边缘设置0.35mm厚的亚克力垫片,从而形成空气间隙,进而构成悬浮式滑移结构,可以有效的避免接触磨损,最大限度地延长器件的使用寿命。同时由于定子和动子的非接触结构,teng的运行阻力较小,需要的驱动力也小,可以用来有效的收集环境中的微风能量。
[0036]
动子包括第一硬质基板1、第一绝缘介电膜2和金属感应电极3,第一绝缘介电膜2和金属感应电极3分别设置在第一硬质基板1的下表面且第一绝缘介电膜2和金属感应电极3中间有间隙,金属感应电极3的下表面还覆盖有第二绝缘介电膜4。
[0037]
本实施例中,第一绝缘介电膜2可采用驻极体材料(例如聚四氟乙烯),可以长时间地保存电荷,为电荷自激励系统提供初始电荷量。
[0038]
定子包括第二硬质基板8、第一电极6、第二电极7和第三绝缘介电膜5,第一电极6、第二电极7为电子对(中间有间隙,例如2mm),分别位于第二硬质基板8的上表面,第一电极6、第二电极7的上表面覆盖有第三绝缘介电膜5。
[0039]
本实施例中,第二绝缘介电膜4和第三绝缘介电膜5可选用保存电荷能力差的介电膜(例如尼龙),避免膜上电荷积累形成高电势,从而产生静电屏蔽。第二绝缘介电膜4的尺寸应大于金属感应电极3的尺寸,第三绝缘介电膜5的尺寸应大于第一电极6和第二电极7形成的电子对尺寸,以防止边缘空气击穿。
[0040]
第一电极6的输出端连接到电荷自激励系统9的第一输入端,第二电极7的输出端连接到电荷自激励系统9的第二输入端,电荷自激励系统9的输出端连接到动子的金属感应电极3的输入端。第一输入端和第二输入端位于同侧,通过设计电荷自激励系统9中两个输入单同侧的连接方式,实现电荷的连续增长。
[0041]
如图2所示,所述电荷自激励系统9包括串联的自倍压整流电路和整流二极管:
[0042]
第一输入端与第一电容c1的一端连接,第二输入端分别与第一二极管d1的正极和第四电容c4的一端连接,第一二极管d1的负极和第一电容c1的另一端并联后分别与第二二极管d2的正极和第二电容c2的一端连接,第二二极管d2的负极和第四电容c4的另一端并联后分别与第三二极管的正极和第五电容c5的一端连接,第三二极管的的负极和第二电容的另一端并联后分别和第四二极管d4的正极和第三电容c3的一端连接,第四二极管d4的负极和第五电容c5的另一端并联后与第五二极管d5的正极连接,第五二极管d5的负极和第三电容c3的另一端并联后与整流二极管d6的正极连接,整流二极管d6的负极连接输出端。整流二极管d6具有单向导通作用,可保证金属感应电极3中只被连续注入一种极性的电荷,达到电荷积累的效果。d1

d5的型号为1n4007;整流二极管d6型号为2cl20kv;c1、c2、c3、c4、c5的电容为2.2nf,但电容大小可以改变,电容值越小,激励速度越快。
[0043]
本实施例中,自倍压整流电路可根据需要选用不同的单元数目以达到更快的电荷增加(激励)速度,本发明为两个单元的自倍压整流电路。自倍压整流电路的激励电压v
e
与动子的金属感应电极3表面电荷的关系如下:d1是第二绝缘介质膜和第三绝缘介质膜之间的距离,ε0是真空介电常数;s是金属感应电极3的面积。由式可知,动子金属感应电极3上的电荷与自倍压整流电路的激励电压成正比,说明激励电压越大,动子的金属感应电极3上的电荷越大。
[0044]
本实施例中,金属感应电极3、第一电极6、第二电极7可以为金属材料电极,也可以是其他导电硅胶、ito等非金属导电材料。
[0045]
本实施例中,定子和动子之间存在空气间隙(即第二绝缘介质膜和第三绝缘介质膜之间的距离,距离为d1),从而构成悬浮式滑移结构,并利用静电感应效应产生电能。
[0046]
本实施例中,在周期性的滑移过程中电荷自激励系统9的工作过程如图3所示。
[0047]
在初始状态下(图3a),第一绝缘介电膜2提前注入较少的电荷(例如负电荷),自倍压整流电路(vmc)两端电压为零。当动子开始周期性运转时,定子电极之间的电位差导致交流输出(图3b、图3c),同时vmc的两端开始充电(例如增加到vo),输出电压随着运行时间的增加而增加(例如增加到3vo),电荷自激励系统9输出到动子的金属感应电极3的电荷(正电荷)也在不断累积。动子上第一绝缘介质膜2初始注入的电荷与金属感应电极3上的电荷极性相反,恰好能协同作用,感应定子电极中的电子移动,最后使悬浮滑移式teng的感应输出不断增加。经过几次循环,vmc的两端电压趋于稳定,输出到动子的金属感应电极3的电荷趋于饱和状态,输出达到最大值(例如增加到5vo),从而实现了电荷自激工作模式,如图3d所
示。
[0048]
图4为四种工作情况下动态输出电荷密度曲线对比。图4
‑①
为传统的非接触式teng输出电荷密度曲线,图4
‑②
为teng的定子输出连接自倍压整流电路但没有整流二极管d6的输出电荷密度曲线,此时,正负电子将同时注入到金属感应电极3,且自倍压整流电路将消耗部分能量,导致输出下降;图4
‑③
为本发明的输出电荷密度曲线,在整流二极管d6的作用下,金属感应电极3的表面电荷密度迅速上升到一个稳定值;图4
‑④
为本发明电荷自激励系统9关断的情况下,曲线迅速下降到初始值。因此,本发明设计的悬浮滑移式电荷自激励发电机具有强大的电输出能力。
[0049]
依靠滑移过程中电荷自激励系统9中电容组串并联状态的自动切换,teng中的感应电荷将成指数形式增加。对于悬浮式teng,由于气隙的存在,动子和定子之间会发生空气击穿,因此在金属感应电极3表面存在一个最大电荷密度(q
max
),满足:p是气体的压强;d2是定子上的第二电极和动子上的金属感应电极之间的距离,ε0是真空介电常数;s是金属感应电极3的面积;a和b是由气体的组成成分和压强决定的常数,标准大气压为101kpa时,a为2.87
×
105v(atm
·
m)
‑1,b为12.6。显然,悬浮式teng的最大电荷密度随着气隙的增大而减小。
[0050]
本实施例中,定子和动子可以绕圆周放射性排列、直线排列或者曲线排列,形成可以收集转动或者滑动能量的悬浮式电荷自激励摩擦发电机;收集转动能量的摩擦发电机如图5所示。
[0051]
动子和定子的基板15可采用内径、外径、厚分别为19mm、210mm、4mm亚克力板,中心的圆孔用于安装连接转轴。定子上的扇形电极对16和17均为铝电极,电极16的内径、外径、径向角分别为72mm、200mm、30
°
,电极17的内径、外径、径向角分别为70mm、198mm、30
°
,电极16和17之间的间隙为2mm;第三介电膜5采用30微米厚的尼龙膜完整的覆盖在电极对表面。动子上,电极18内径、外径、径向角分别为70mm、198mm、30
°
,厚度为20微米;电极18上覆盖一层第三介电膜5;每块独立的绝缘介质膜19为聚四氟乙烯薄膜(ptfe),厚度为50微米,绝缘介质膜19的内径、外径、径向角分别为72mm、200mm、30
°
。定子和动子通过转轴相连,一个额外的电刷被使用,连接激励路径,避免绕线问题。
[0052]
为了测试本发明发电机的输出性能,用步进电机在不同转速模式下驱动发电机,同时用吉时利静电计(keithley 6514)和高速静电电压表(trek model 370)测量发电机输出性能。
[0053]
如图6所示:通过电荷自激励,在300rpm的驱动频率下悬浮滑移式摩擦纳米发电机的感应输出电荷能达到1μc,有效电荷密度达到了71.5μc m

2(图6a),图6b、图6c是相应的输出电流和输出电压曲线,分别能达到76μa和470v,这里需要说明由于自励过程需要回路中有电流的存在,因此这里的电压是在外接10mω负载下测量得到。图6d展示了输出电荷随着转速的增加而变化的情况,可以看出转移电荷呈现先增加后减少的趋势,这是由于转速较低时电荷激励在短时间内没有达到饱和,当转速增大时,由于制造工艺的不完善,转子的离心力和垂直振动也相应增大,导致转子与定子之间的间隙增大,因此最大输出电荷随着速度的增加而下降。此外,不同外负载电阻下,发电机在300rpm时的功率如图6e所示,在30mω时的峰值功率为34.68mw。图6f为对不同电容的充电能力,例如100μf的电容在180s可以
充电到50v,220μf的电容在300s可以充电到30v,470μf的电容在300s可以充电到15v,1mf的电容在300s可以充电到5v。
[0054]
如图7所示,本发明的发电机,在3m/s的低风速下就能驱动,因此可用于收集微风能量。图7a显示了发电机在不同风速驱动下的电荷输出情况,转移电荷量保持在420nc左右;这里不同于电机驱动的趋势,主要是因为即使在高风速下,相应的转速仍然相对较低。此外,风力的不均匀力和大的波动容易导致较大的垂直振动,降低了低速时的转移电荷。因此,在风力驱动时,由于上述两个因素的偏移,悬浮滑移式电荷自激励摩擦纳米发电机的输出电荷呈现出恒定的趋势。图7b在120mω的阻力下,发电机在7m/s风速下实现了16.7mw的峰值功率。
[0055]
本实施例中,悬浮滑移式电荷自激励摩擦发电机在5m/s的风速驱动力下,分别点亮912个5mm直径串联绿色led灯,发出较为明亮的灯光。
[0056]
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献

  • 日榜
  • 周榜
  • 月榜