一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

用于完井工程控水模拟的测试设备及实验系统的制作方法

2021-12-17 20:51:00 来源:中国专利 TAG:


1.本发明属于石油天然气开采技术领域,具体涉及一种用于完井工程控水模拟的测试设备及实验系统。


背景技术:

2.在油气开采过程中,油气的储层沿油气井剖面方向为非均匀介质,导致油气井不同位置储液的渗透量有高有低,通常油气井高渗段产水量大,而低渗段产水量很小甚至尚未见水,当某一井段开始大量出水后,会影响周边的井段开采,严重的甚至会水淹井筒,造成不可估计的经济损失。因此,需要适当限制高渗井段油气产量,提高低渗段产油气产量,实现水平井均衡产油产气,而模拟油水经过控水装置流入井筒内这一过程,对研究控水完井技术至关重要。
3.但是,现有的控水模拟实验装置功能比较单一,只能对一种长度的井筒和一种储层生产条件进行控水模拟实验,从而导致实验效率低,并在一定程度上影响和限制了控水模拟实验的可操性和数据的精确性。


技术实现要素:

4.针对现有技术的上述缺陷或不足,本发明提供了一种用于完井工程控水模拟的测试设备及实验系统,旨在解决现有控水模拟实验装置功能单一,只能对一种长度的井筒和一种储层生产条件进行控水模拟实验的技术问题。
5.为实现上述目的,本发明提供一种用于完井工程控水模拟的测试设备,其中,测试设备包括外管组件、内管组件、封隔装置、压力检测装置以及油水比例检测装置;内管组件置于外管组件内并与外管组件形成环空通道,内管组件包括顺次设置的第一内管、第二内管和第三内管,第一内管远离第二内管的一端与外管组件的内壁连接,第三内管伸出于外管组件并形成有出液口,第一内管和第二内管之间用于设置第一控水装置,第二内管和第三内管之间用于设置第二控水装置;封隔装置设置在第二内管的外周侧上并用于将环空通道分隔为两个单元环空,两个单元环空分别对应的外管组件上均形成有供液体进入的注入口;两个单元环空分别对应的外管组件上均设置有压力检测装置;油水比例检测装置设置在内管组件内。
6.在本发明的实施例中,油水比例检测装置包括设置在内管组件内的第一环状基座以及周向间隔设置在第一环状基座的内壁上多个电阻率测试探头。
7.在本发明的实施例中,测试设备还包括取样装置,取样装置包括靠近第一环状基座设置在内管组件内的第二环状基座、设置在第二环状基座上并开设有取样口的中空取样架、以及与中空取样架连接的取样容器。
8.在本发明的实施例中,中空取样架包括中心腔体、沿中心腔体的周向依次间隔设置在中心腔体上的至少两个中空分接管、以及设置在中心腔体上的中空外接管,至少两个中空分接管远离中心腔体的一端均与第二环状基座的内壁连接,至少两个中空分接管上均
间隔开设有多个取样口,取样容器可拆卸连接地设置在中空外接管上。
9.在本发明的实施例中,外管组件为透明管件,测试设备还包括沿外管组件的长度方向可移动设置的观测相机以及与观测相机通讯连接的控制装置。
10.在本发明的实施例中,测试设备还包括举升装置,举升装置包括基架、水平支架、竖直支架和提升机构,水平支架可移动地设置在基架上,用于固定外管组件;竖直支架设置在基架的一端,提升机构设置在竖直支架上;并用于与所述水平支架的一端连接。
11.在本发明的实施例中,内管组件上还设有第一防砂筛管和第二防砂筛管,第一控水装置位于第一防砂筛管的内侧,第二控水装置位于第二防砂筛管的内侧。
12.在本发明的实施例中,第二内管的数量为至少两个,第一内管、至少两个第二内管中的每个第二内管、以及第三内管顺次设置,第一内管和相邻设置的第二内管之间用于设置第一控水装置,第三内管和相邻设置的第二内管之间用于设置第二控水装置,任意相邻设置的两个第二内管之间用于设置第三控水装置,封隔装置的数量与第二内管的数量相同,至少两个封隔装置与至少两个第二内管一一对应设置,至少两个封隔装置用于将环空通道分隔为至少三个单元环空,至少三个单元环空分别对应的外管组件上均形成有注入口,至少三个单元环空分别对应的外管组件上均设置有压力检测装置。
13.在本发明的实施例中,外管组件包括进口法兰、中间法兰、出口法兰、第一外管、第二外管、进口端盖和出口端盖,第一外管和第一内管通过进口法兰连接,进口端盖设置在进口法兰上并用于密封第一内管,进口法兰上形成有与单元环空对应的注入口,第一外管和第二外管通过中间法兰连接,中间法兰上形成有与单元环空对应的注入口,第二外管和第三内管通过出口法兰连接,出口端盖设置在出口法兰上并用于密封出口法兰。
14.为实现上述目的,本发明提供一种用于完井工程控水模拟的实验系统,其中,实验系统包括供水设备、供油设备、供砂设备以及根据以上所述的用于完井工程控水模拟的测试设备,供水设备包括顺次连接的供水罐、第一质量流量计和第一供水阀门;供油设备包括顺次连接的供油罐、第二质量流量计和第一供油阀门;供砂设备包括顺次连接的第一供砂罐和第一供砂阀门;测试设备的注入口通过管道分别与第一供水阀门、第一供油阀门和第一供砂阀门连接。
15.通过上述技术方案,本发明实施例所提供的用于完井工程控水模拟的测试设备具有如下的有益效果:
16.用于完井工程控水模拟的测试设备包括外管组件、内管组件、封隔装置、压力检测装置以及油水比例检测装置,内管组件置于外管组件内并与外管组件形成环空通道,内管组件包括顺次设置的第一内管、第二内管和第三内管,第一内管远离第二内管的一端与外管组件的内壁连接,第三内管伸出于外管组件并形成有出液口,第一内管和第二内管之间用于设置第一控水装置,第二内管和第三内管之间用于设置第二控水装置,封隔装置设置在第二内管的外周侧上并用于将环空通道分隔为两个单元环空,两个单元环空分别对应的外管组件上均形成有供液体进入的注入口,两个单元环空分别对应的外管组件上均设置有压力检测装置,油水比例检测装置设置在内管组件内。即通过控制设置在第二内管的外周侧上的封隔装置可以将环空通道分隔为两个单元环空,使得两个单元环空对应的外管组件可以模拟两段独立的短井筒,同时每个单元环空分别对应的外管组件上均形成有供液体注入的注入口以及设置有压力检测装置,第一内管和第二内管之间用于设置第一控水装置,
第二内管和第三内管之间用于设置第二控水装置,因此每个单元环空内均设置有控水装置,此时通过测试设备可以完成第一长度的井筒的控水模拟实验,通过控制封隔装置连通环空通道可以使得整个外管组件模拟一段长井筒,此时则可以完成第二长度的井筒的控水模拟实验;当控制封隔装置将外管组件分隔两段独立的短井筒时,还可以分别向对应的注入口注入不同比例的砂液,以能够同时对不同的储层生产条件进行控水模拟实验;在内管组件内设置有油水比例检测装置,其作用为检测通过控水装置进入到内管组件内的液体的油水比例,从而判断控水实验的效果。相较于现有技术,本发明提供的用于完井工程控水模拟的测试设备既能够模拟油井分段开采的控水模拟实验,还能够同时进行不同储层生产条件的控水模拟实验,从而极大程度上丰富了测试功能,提高了实验效率以及有利于保证实验的可操性和数据的精确性。
17.本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
18.附图是用来提供对本发明的理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
19.图1是根据本发明实施例中的实验系统的结构示意图;
20.图2是根据本发明实施例中的测试设备的结构示意图;
21.图3是根根据本发明实施例中的封隔器的放大示意图;
22.图4是根据本发明实施例中的油水比例检测装置的结构示意图;
23.图5是根据本发明实施例中的取样装置的结构示意图;
24.图6是根据本发明实施例中的举升装置的结构示意图;
25.图7是根据本发明实施例中的进口法兰、中间法兰、出口法兰中其中一者的结构示意图;
26.附图标记说明
27.11
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
外管组件
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
111
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
第一外管
28.112
ꢀꢀꢀꢀꢀꢀꢀꢀ
第二外管
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
113
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
第三外管
29.114
ꢀꢀꢀꢀꢀꢀꢀꢀ
进口端盖
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
115
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
出口端盖
30.116
ꢀꢀꢀꢀꢀꢀꢀꢀ
进口法兰
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
117
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
中间法兰
31.118
ꢀꢀꢀꢀꢀꢀꢀꢀ
出口法兰
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
119
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
注入口
32.1110
ꢀꢀꢀꢀꢀꢀꢀ
固定孔
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
1111
ꢀꢀꢀꢀꢀꢀꢀꢀ
密封圈槽
33.12
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
内管组件
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
121
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
第一内管
34.122
ꢀꢀꢀꢀꢀꢀꢀꢀ
第二内管
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
123
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
第三内管
35.124
ꢀꢀꢀꢀꢀꢀꢀ
第一控水装置
ꢀꢀꢀꢀꢀ
125
ꢀꢀꢀꢀꢀꢀꢀ
第二控水装置
36.126
ꢀꢀꢀꢀꢀꢀꢀ
第三控水装置
ꢀꢀꢀꢀꢀ
127
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
出液口
37.128
ꢀꢀꢀꢀꢀꢀꢀ
第一防砂筛管
ꢀꢀꢀꢀꢀ
1210
ꢀꢀꢀꢀꢀꢀꢀ
第二防砂筛管
38.129
ꢀꢀꢀꢀꢀꢀꢀ
第三防砂筛管
ꢀꢀꢀꢀꢀ
131
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
环空通道
39.132
ꢀꢀꢀꢀꢀꢀꢀ
压力检测装置
ꢀꢀꢀꢀꢀ
14
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
封隔装置
40.141
ꢀꢀꢀꢀꢀꢀꢀꢀ
加压泵
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
142
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
注入泵
41.143
ꢀꢀꢀꢀꢀꢀꢀꢀ
封隔控制阀
ꢀꢀꢀꢀꢀꢀꢀ
144
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
控制管路
42.145
ꢀꢀꢀꢀꢀꢀꢀꢀ
胶套
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
146
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
液压腔
43.15
ꢀꢀꢀꢀꢀ
油水比例检测装置 151
ꢀꢀꢀꢀꢀꢀꢀ
第一环状基座
44.152
ꢀꢀꢀꢀꢀꢀ
电阻率测试探头
ꢀꢀꢀ
153
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
外接接头
45.16
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
取样装置
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
161
ꢀꢀꢀꢀꢀꢀꢀ
第二环状基座
46.162
ꢀꢀꢀꢀꢀꢀꢀꢀ
中空取样架
ꢀꢀꢀꢀꢀꢀꢀ
1621
ꢀꢀꢀꢀꢀꢀꢀꢀ
中心腔体
47.1622
ꢀꢀꢀꢀꢀꢀꢀ
中空分接管
ꢀꢀꢀꢀꢀꢀꢀ
1623
ꢀꢀꢀꢀꢀꢀꢀꢀ
中空外接管
48.163
ꢀꢀꢀꢀꢀꢀꢀꢀ
取样口
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
17
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
举升装置
49.171
ꢀꢀꢀꢀꢀꢀꢀꢀ
基架
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
172
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
水平支架
50.173
ꢀꢀꢀꢀꢀꢀꢀꢀ
竖直支架
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
174
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
提升机构
51.1741
ꢀꢀꢀꢀꢀꢀꢀ
卷扬机
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
1742
ꢀꢀꢀꢀꢀꢀꢀꢀ
吊索
52.175
ꢀꢀꢀꢀꢀꢀꢀꢀ
第一滑轮
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
176
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
第二滑轮
53.181
ꢀꢀꢀꢀꢀꢀꢀꢀ
观测相机
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
182
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
移动台
54.19
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
拉杆
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ2ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
供油设备
55.21
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
供油罐
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
22
ꢀꢀꢀꢀꢀꢀꢀ
第一供油阀门
56.23
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
供油泵
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
24
ꢀꢀꢀꢀꢀꢀꢀꢀ
第二蓄能器
57.25
ꢀꢀꢀꢀꢀꢀꢀꢀ
第二安全阀
ꢀꢀꢀꢀꢀꢀꢀ
26
ꢀꢀꢀꢀꢀꢀꢀ
第二供油阀门
58.27
ꢀꢀꢀꢀꢀꢀ
第二质量流量计
ꢀꢀꢀ
28
ꢀꢀꢀꢀꢀꢀꢀꢀ
第三供油阀门
[0059]3ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
供砂设备
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
31
ꢀꢀꢀꢀꢀꢀ
第一混合控制阀门
[0060]
32
ꢀꢀꢀꢀꢀꢀꢀꢀ
第一供砂罐
ꢀꢀꢀꢀꢀꢀꢀ
33
ꢀꢀꢀꢀꢀꢀꢀꢀ
第一供砂阀门
[0061]
34
ꢀꢀꢀꢀꢀ
第二混合控制阀门 35
ꢀꢀꢀꢀꢀꢀꢀꢀ
第二供砂罐
[0062]
36
ꢀꢀꢀꢀꢀꢀꢀ
第二供砂阀门
ꢀꢀꢀꢀꢀ4ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
混合槽
[0063]5ꢀꢀꢀꢀꢀꢀꢀ
入口压差传感器
ꢀꢀꢀ6ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
第三安全阀
[0064]7ꢀꢀꢀꢀꢀꢀꢀꢀ
入口控制阀门
ꢀꢀꢀꢀꢀ8ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
供水设备
[0065]
81
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
供水罐
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
82
ꢀꢀꢀꢀꢀꢀꢀ
第一供水阀门
[0066]
83
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
供水泵
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
84
ꢀꢀꢀꢀꢀꢀꢀꢀ
第一蓄能器
[0067]
85
ꢀꢀꢀꢀꢀꢀꢀꢀ
第一安全阀
ꢀꢀꢀꢀꢀꢀꢀ
86
ꢀꢀꢀꢀꢀꢀꢀ
第二供水阀门
[0068]
87
ꢀꢀꢀꢀꢀꢀ
第一质量流量计
ꢀꢀꢀ
88
ꢀꢀꢀꢀꢀꢀꢀꢀ
第三供水阀门
[0069]9ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
回收设备
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
91
ꢀꢀꢀꢀꢀꢀꢀ
出口压差传感器
[0070]
92
ꢀꢀꢀꢀꢀꢀꢀ
第一回收阀门
ꢀꢀꢀꢀꢀ
93
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
过滤器
[0071]
94
ꢀꢀꢀꢀꢀꢀꢀꢀ
回收背压阀
ꢀꢀꢀꢀꢀꢀꢀ
95
ꢀꢀꢀꢀꢀꢀꢀꢀ
第二回收阀门
[0072]
96
ꢀꢀꢀꢀꢀꢀꢀ
第三回收阀门
ꢀꢀꢀꢀꢀ
97
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
三相分离器
[0073]
98
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
回油泵
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
99
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
回水泵
具体实施方式
[0074]
以下结合附图对本发明的具体实施例进行详细说明。应当理解的是,此处所描述的具体实施例仅用于说明和解释本发明,并不用于限制本发明。
[0075]
下面参考附图描述本发明的用于完井工程控水模拟的测试设备。
[0076]
如图1和图2所示,在本发明的实施例中,提供一种用于完井工程控水模拟的测试设备,其中,用于完井工程控水模拟的测试设备包括:
[0077]
外管组件11;
[0078]
内管组件12,内管组件12置于外管组件11内并与外管组件11形成环空通道131,内管组件12包括顺次设置的第一内管121、第二内管122和第三内管123,第三内管123的一端伸出于外管组件11的一端并形成有出液口127,第一内管121和第二内管122之间用于设置第一控水装置124,第二内管122和第三内管123之间用于设置第二控水装置125;
[0079]
封隔装置14,设置在第二内管122的外周侧上并用于将环空通道131分隔为两个单元环空,两个单元环空分别对应的外管组件11上均形成有供液体进入的注入口119;
[0080]
压力检测装置132,两个单元环空分别对应的外管组件11上均设置有压力检测装置132;以及设置在内管组件12内的油水比例检测装置15。
[0081]
当使用上述的测试设备进行控水模拟实验时,可以通过控制设置在第二内管122外周测上的封隔装置14将环空通道131分隔为两个单元环空,使得两个单元环空对应的外管组件11可以模拟两段独立的短井筒,同时每个单元环空分别对应的外管组件11上均形成有供液体注入的注入口119以及设置有压力检测装置132,第一内管121和第二内管122之间用于设置第一控水装置124,第二内管122和第三内管123之间用于设置第二控水装置125,因此每个单元环空内均设置有控水装置,此时通过测试设备可以完成第一长度的井筒的控水模拟实验,通过控制封隔装置14连通环空通道131可以使得整个外管组件11模拟一段长井筒,此时则可以完成第二长度的井筒的控水模拟实验;当控制封隔装置14将外管组件11分隔两段独立的短井筒时,还可以分别向对应的注入口119注入不同比例的液体,以能够同时对不同的储层生产条件进行控水模拟实验;此外,当控制封隔装置14将外管组件11分隔两段独立的短井筒时,还可以将第一控水装置124和第二控水装置125设置为不同类型,以能够在不需要拆装内管组件12的情况下,对不同类型的控水装置进行控水性能检测;在内管组件12内设置有油水比例检测装置15,其作用为检测通过控水装置进入到内管组件12内的液体的油水比例,从而判断控水实验的效果。相较于现有技术,本发明提供的用于完井工程控水模拟的测试设备既能够模拟油井分段开采的控水模拟实验,还能够同时进行不同储层生产条件的控水模拟实验,从而极大程度上丰富了测试功能,提高了实验效率以及有利于保证实验的可操性和数据的精确性。
[0082]
如图2和图4所示,在本发明的实施例中,油水比例检测装置15包括设置在内管组件12内的第一环状基座151以及周向间隔设置在第一环状基座151的内壁上的多个电阻率测试探头152。其中,在内管组件12加工时,内侧会开设有用于安装第一环状基座151的卡槽结构,第一环状基座151安装在卡槽结构内,第一环状基座151内壁设置有多个电阻率测试探头152,多个电阻率测试探头152并沿第一环状基座151的圆周方向上均匀分布,并且油水比例检测装置15还包括与电阻率测试探头152电连接的外接接头152,电阻率测试探头152检测流经第一环状基座151的液体电阻率数值,再通过外接接头153接入分析仪器,来对流经第一环状基座151的液体进行油水比例在线分析。
[0083]
如图2和图5所示,在本发明的实施例中,测试设备还包括取样装置16,取样装置16包括靠近第一环状基座151设置在内管组件12内的第二环状基座161、设置在第二环状基座161上并开设有取样口163的中空取样架162、以及与中空取样架162连接的取样容器。其中,内管组件12内侧同样设有用于安装第二环状基座161的卡槽结构,并且第一环状基座151的安装位置和第二环状基座161相邻,取样容器用于盛放取样的液体,通过对油水比例检测装
置15附近的液体进行取样,待实验结束后,将取样容器取出,来对取样的液体进行取样检测。
[0084]
在本发明的实施例中,中空取样架162包括中心腔体1621、沿中心腔体1621的周向依次间隔设置在中心腔体1621上的至少两个中空分接管1622、以及设置在中心腔体1621上的中空外接管1623,至少两个中空分接管1622远离中心腔体1621的一端均与第二环状基座161的内壁连接,至少两个中空分接管1622上均间隔开设有多个取样口163,取样容器可拆卸连接地设置在中空外接管1623上。液体通过中空分接管1622上的取样口163,进入中空分接管1622,再进入中空外接管1623,最后进入取样容器中保存,在实验结束后,通过取出取样容器,来对取样的液体进行取样检测。其中,中空分接管1622的数量可以为四个,四个中空分接管1622呈十字型设置。
[0085]
在本发明的实施例中,外管组件11为透明管件,测试设备还包括沿外管组件11的长度方向可移动设置的观测相机181以及与观测相机181通讯连接的控制装置。其中,外管组件11可选用高透光性的进口pvc(polyvinyl chloride,聚氯乙烯)浇筑管材,也可以为其他透明材质的部件。观测相机181可选用1200万像素工业相机、带有可变焦镜头,并配备led光源,能够清晰的观测透明外管组件11内的液体运移情况。为了对每一段模拟井筒进行细致观测,通常在沿外管组件11的长度方向设置一个移动台182,移动台182上安装有滑轮,观测相机181安装在滑轮上,通过滑轮带动观测相机181在移动台182上沿着外管组件11的长度方向移动。同时,测试设备还包括控制装置,控制装置与观测相机181通讯连接,控制装置能控制观测相机181的移动,并获取观测相机181观测的液体运转情况数据和油水比例数据,通过获取的数据对测试设备进行动态演化与数据分析,分析的结果对优化并设计控水工具的结构及参数具有重要意义。需要特别说明的是,控制装置不仅仅局限于与观测相机181通讯连接,还能与其他的装置通讯连接,如控制装置能获取压力检测装置132的数据,并对压力数据进行分析。
[0086]
如图6所示,在本发明的实施例中,测试设备还包括举升装置17,举升装置17包括基架171、水平支架172、竖直支架173和提升机构174;水平支架172可移动设置在基架171上,用于固定外管组件11;竖直支架173固定设置在基架171的一端;提升机构174设置在竖直支架173上,并用于与水平支架172的一端连接。其中,水平支架172可移动地设置在基架171上,提升机构174用于与水平支架172的一端连接,以使水平支架172的一端沿竖直支架173的高度方向进行升降运动,而固定在水平支架172上的外管组件11也可以跟随水平支架172进行升降运动,从而使得外管组件11的角度可以发生偏转。提升机构174包括卷扬机1741和与水平支架172一端连接的吊索1742,卷扬机1741工作,通过吊索1742带动水平支架172的一端在竖直支架173上运动,由于测试设备固定在水平支架172上,在卷扬机1741工作时,外管组件11跟随水平支架172一起运动,同时为使外管组件11运动平稳,在基架171上设置第一滑轮175并与水平支架172的一端连接,在竖直支架173上设置第二滑轮176并与水平支架172的另一端连接。通过举升装置17能让测试设备模拟0至90
°
中任意角度的井筒。
[0087]
在本发明的实施例中,内管组件12上还设有第一防砂筛管128和第二防砂筛管1210,第一控水装置124位于第一防砂筛管128内侧,第二控水装置125位于第二防砂筛管1210的内侧。具体地,第一控水装置124的两端一一对应地与第一内管121和第二内管122进行焊接,以将第一内管121和第二内管122连接起来,并且第一控水装置124上形成有供液体
进入的第一筛孔,第一防砂筛管128焊接在第一内管和121第二内管122的外侧壁上,以围合形成有放置第一防砂介质的第一防砂空间,第一控水装置124对应位于第一防砂空间内,第一防砂筛管128上还开设有供砂液进入的第一进液口,则使得砂液可以自第一防砂筛管128进入第一防砂空间,再从第一防砂空间流入到第一控水装置124进行控水模拟。同样的,第二控水装置125的两端一一对应地与第二内管122和第三内管123进行焊接,以将第二内管122和第三内管123连接起来,并且第二控水装置125上开设有供液体进入的第二筛孔,同时,第二防砂筛管1210焊接在第二内管122和第三内管123的外侧壁上,以围合形成用于放置第二防砂介质的第二防砂空间,第二控水装置125对于位于第二防砂空间内,第二防砂筛管1210上开设有供砂液进入的第二进液口,则砂液自第二防砂筛管1210的第二进液口进入,经第二防砂空间的第二防砂介质防砂后,进入第二控水装置125进行控水模拟。在实验中,实验介质为油水砂的混合液体时,液体进过测试设备,先分别经过第一防砂筛管128和第二防砂筛管1210,再进入第一控水装置124和第二控水装置125进行控水模拟,由于在实际油气开采中通常会含有水、砂等介质,通过把实验介质设置为油水砂混合,再设置第一防砂筛管128和第二防砂筛管1210,能让模拟实验更接近于实际生产。
[0088]
需要特别说明的是,在本发明的实施例中,控水装置的结构为一段管本体上设置有控水结构的基管,该控水结构可以为在基管上开设的通孔,通过改变孔径的大小、通孔的数量和密度来达到控水效果,或者该控水结构也可以是安装在基管上的调流控水阀或者控水嘴等,其中基管的两端用于连接第一内管121、第二内管122和第三内管123。
[0089]
在本发明的实施例中,第二内管122的数量为至少两个,第一内管121、至少两个第二内管122中的每个第二内管122、以及第三内管123顺次设置,第一内管121和相邻设置的第二内管122之间用于设置第一控水装置124,第三内管123和相邻设置的第二内管122之间用于设置第二控水装置125,任意相邻设置的两个第二内管122之间用于设置第三控水装置126,封隔装置14的数量与第二内管122的数量相同,至少两个封隔装置14与至少两个第二内管122一一对应设置,至少两个封隔装置14用于将环空通道131分隔为至少三个单元环空,至少三个单元环空分别对应的外管组件11上均形成有注入口119,至少三个单元环空分别对应的外管组件11上均设置有压力检测装置132。
[0090]
其中,第二内管122的数量可以为多个,对应的第三控水装置126的数量也为多个,多个第二内管122中任意相邻设置的两个第二内管122之间用于设置第三控水装置126,当然第三控水装置126的类型可以相同也可以不同,根据具体实验需求进行相应设置。再通过第一内管121和相邻设置的第二内管122之间设置第一控水装置124,第三内管123和相邻设置的第二内管122之间设置第二控水装置125,以共同组成内管组件12。再通过在每个第二内管122上分别设置封隔装置14,每个第二内管122上的封隔装置14共同工作将环空通道131分隔成多个单元环空,每个单元环空对应的外管组件11上均设置有注入口119和压力检测装置132,需要特别说明的是,每个第二内管122上的封隔装置14可分别单独控制,通过控制不同的封隔装置14,测试设备既可模拟多段独立的井筒,也可以模拟不同位置和不同长度的井筒,尤其是当需要研究斜井或垂直井的不同高度、不同长度的井筒的液体运转时,只需通过控制相应的封隔装置14,通过在对应的注入口119注入液体就能达到模拟效果。同时,可改变第一控水装置124、第二控水装置125、多个第三控水装置126的类型,来在不需要拆装内管组件12的情况下,对多个控水装置的控水效果进行测试。每个注入口119注入不同
比例的液体时,可同时进行多种储层生产条件的控水模拟实验,至少三个单元环空分别对应的外管组件11上均设置有压力检测装置132,则可测得不同模拟地层液条件下各井段之间的压差,同时,在内管组件12内设置第三防砂筛管129,第三防砂筛管129的数目也为多个,且第三控水装置126一一对应设置在第三防砂筛管129内侧,相应的,第一控水装置124位于第一防砂筛管128内侧,第二控水装置125位于第二防砂筛管1210的内侧,当模拟实验的液体含有水油砂时,液体进入对应的单元环空后,对应通过第一防砂筛管128、第二防砂筛管1210和第三防砂筛管129,再分别进行控水实验,通过防砂与控水组合,实验条件与实际生产更加接近,从而使得实验数据更加具有参考意义。
[0091]
在本发明的实施例中,外管组件11包括进口法兰116、中间法兰117、出口法兰118183、第一外管111、第二外管112、进口端盖114和出口端盖115,第一外管111和第一内管121通过进口法兰116连接,进口端盖114设置在进口法兰116上并用于密封第一内管121,进口法兰116上形成有与单元环空对应的注入口119,第一外管111和第二外管112通过中间法兰117连接,中间法兰117上形成有与单元环空对应的注入口119,第二外管112和第三内管123通过出口法兰118连接,出口端盖115设置在出口法兰118上并用于密封出口法兰118。即可以通过中间法兰117将第一外管111和第二外管112组装形成外管组,通过进口法兰116将第一外管111和第一内管121进行连接,并且设置在进口法兰116上的进口端盖114可以密封第一内管121,通过出口法兰118将第二外管112和第三内管123进行连接,并且设置在出口法兰118上的出口端盖115可以密封出口法兰118,以使得整个外管组件11分段设置,并与内管组件12可拆卸连接。需要特别说明的是,当需要模拟的井筒为最多模拟两段时,第一外管111和第二外管112之间可通过中间法兰117连接,当需要模拟的井筒为多段,在第一外管111和第二外管112之间还包括多个第三外管113以及多个中间法兰117,相邻的两个第三外管113之间通过中间法兰117来连接,通过连接多段第三外管113,来改变外管组件11的长度,从而实现外管组件11长度的自由变化以及灵活组装。其中,进口法兰116、出口法兰118以及多个中间法兰117上均形成有注入口119,液体通过法兰上的注入口119注入,这样可以避免在第一外管111、第二外管112、第三外管113上开孔,保护外管结构的完整性。同时,对应的每个进口法兰116、中间法兰117、出口法兰118上的注入口119的数量可以为多个,压力检测装置132可安装于多个注入口119的其中一个内。
[0092]
如图7所示,进口法兰116、中间法兰117、出口法兰118的结构均包括在法兰本体的圆周面上均匀开设的多个注入口119、法兰本体的端面外圈均匀开设的多个固定孔1110以及法兰本体的端面内圈开设的密封圈槽1111,端面内圈的两端均有密封圈槽1111,中间法兰117的密封圈槽1111可以用于对外管组件11中相邻设置的两个外管进行连接。在通过设置拉杆19,拉杆19依次穿过进口法兰116、中间法兰117、出口法兰118上的固定孔1110,以固定整个测试设备,同时,注入口119有多个,可接入管路的输入端用来注入液体,也可接入压力检测装置132来检测对应单元环空内的压力,从而形成注入口119的多功能用途。
[0093]
为实现上述目的,在本发明中还提供了一种用于完井工程控水模拟的实验系统,其中,实验系统包括供水设备8、供油设备2、供砂设备3以及根据以上所述的用于完井工程控水模拟的测试设备,供水设备8包括顺次连接的供水罐81、供水流量计和第一供水阀门82,供油设备2包括顺次连接的供油罐21、供油流量计和第一供油阀门22,供砂设备3包括顺次连接的第一供砂罐32和第一供砂阀门33,测试设备的注入口119通过管道分别与第一供
水阀门82、第一供油阀门22和第一供砂阀门33连接。由于实验系统采用了上述实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
[0094]
技术方案所带来的所有有益效果,在此不再一一赘述。
[0095]
具体地,供水设备8包括用管路顺次连接的的供水罐81、第一供水阀门82、供水泵83、第一蓄能器84、第一安全阀85、第二供水阀门86、第一质量流量计87和第三供水阀门88。
[0096]
供油设备2包括用管路顺次连接的的供油罐21、第一供油阀门22、供油泵23、第二蓄能器24、第二安全阀25、第二供油阀门26、第二质量流量计27和第三供油阀门28。
[0097]
供砂设备3包括互为备用的第一供砂罐32、第二供砂罐35,以及第一混合控制阀门31、第一供砂阀门33、第二混合控制阀门34、第二供砂阀门36。
[0098]
在本发明的实施例中,实验系统还包括回收设备9,回收设备9包括两路管路,分别对应于实验介质有砂和无砂时通过,有砂时的液体流经管路为顺次连接的第一回收阀门92、过滤器93、回收背压阀94和第二回收阀门95,第一回收阀门92通过管道与出液口127连接,无砂时的液体流经的管路为顺次连接的出口压力传感91和第三回收阀门96。然后液体再进入三相分离器97进行分离。其中,过滤器93用于过滤液体中的固体颗粒,优选于过滤精度小于10μm的过滤器93,以使液体经过过滤,进入三相分离器97的液体介质纯净,三相分离器97通过管道分别与回油泵98、回水泵99连接,三相分离器97将液体进行分离,分离后的油水经回油泵98、回水泵99,分别流入供油罐21和供水罐81中,实现油水的重复利用,节约成本,经分离后的砂沉在三相分离器97下部,将下部的开关打开可将砂排出。
[0099]
其中,第一蓄能器84、第二蓄能器24的作用为:当系统管路内的压力升高时,液体进入蓄能器,蓄能器内的原有的气体被压缩,直至管路内的液体的压力不再上升;当系统管路内的压力下降时,被压缩的气体通过膨胀,将液体压回管路中,从而减缓管路压力的下降。
[0100]
其中,第一质量流量计87,第二质量流量计27用来计量供水泵83、供油泵23输送的流量,通过计量的流量,来计算达到预定混合比例,供水设备8、供油设备2所提供的流量。
[0101]
其中,第一安全阀85、第二安全阀25,第三安全阀6用于管路超压保护。
[0102]
其中,回收背压阀94用于稳定经过阀门的液体的压力,防止回流,同时也能用于泄压。
[0103]
其中,三相分离器97用于将水油混合的液体分离。
[0104]
在本发明实施例中,系统还包括混合槽4,混合槽4用于将油、水、砂混合;入口压差传感器5,用于检测混合后的液体进入测试设备前的压力;出口压差传感器91,用于检测液体经过测试设备后的压力。
[0105]
在本发明实施例中,供水设备8、供油设备2、供砂设备3的各个阀门通过控制管路144的开闭程度,可调节油水砂的混合比例。
[0106]
再如图3所示,在本发明的实施例中,封隔装置14可以为液压可回收封隔器。液压可回收封隔器安装在内管组件12外侧,用于将环空通道131隔开。液压可回收封隔器包括加压泵141、注入泵142、封隔控制阀143、控制管路144和封隔器本体,封隔器本体套设于内管组件12上,封隔器本体包括胶套145和与控制管路144连通的液压腔146,液压可回收封隔器的位置与对应的外管组件11上的注入口119错开设置,以防止液压可回收封隔器膨胀时堵
塞注入口119。液压可回收封隔器工作时,通过外部加压泵141、注入泵142和控制管路144将液压加载到液压腔146内,封隔器本体在液压的作用下膨胀变形,从而将环空通道131分隔为两个单元环空;当液压可回收封隔器不工作时,压力释放,封隔器本体在外部压力和自身弹力的作用下回复到原始状态,环空通道131连通,在实验结束后,可将液压可回收封隔器收回再利用,实现循环使用。为了更便捷的控制封隔器,可采用数字定位监测plc(programmable logic controller,可编程逻辑控制器)控制电路,只需通过软件就能实现封隔装置14的开关控制。
[0107]
需要特别说明的是,在本发明的实施例中,为实验效果更好,控水模拟的实验系统所包含的元件不仅仅限制于此,还包括其他用以控制和检测各设备的运行的阀门、传感器等元件。
[0108]
在本发明的实施例中,实验系统的实验流程如下:
[0109]
s1、供水设备8和供油设备2可以直接通过管路将水油导向注入口119,也可以先通过管道导向加砂装置中;
[0110]
s2、通过第一混合控制阀门31控制水油进入第一供砂罐32,以及通过第一供砂阀门33控制第一供砂罐32的加砂量,或通过第二混合控制阀门34控制水油进入第二供砂罐35,以及通过第二供砂阀门36控制第二供砂罐35的加砂;其中第一供砂罐32、第二供砂罐35互为备用,再将水油砂流入混合槽4充分混合形成混合液体;
[0111]
s3、混合后的液体经入口压差传感器5、第三安全阀6、入口控制阀门7进入测试设备;
[0112]
s4、液体通过注入口119进入到环空通道131所对应的单元环空,由于封隔装置14的封隔,且进口法兰116,中间法兰117,出口法兰118均可以注入液体,测试设备同时模拟多段井筒;
[0113]
s5、液体先分别通过第一防砂筛管128、第二防砂筛管1210、第三防砂筛管129进行控砂,再进入到第一控水装置124、第二控水装置125、第三控水装置126进行控水模拟实验,然后进入到内管组件12内部,油水比例检测装置15对内管组件12内的液体进行在线分析,取样器对流经油水比例检测装置15的液体进行取样保存,剩余液体再由出液口127流出;在此期间,由于流体中携带有砂,在分别通过第一防砂筛管128、第二防砂筛管1210、第三防砂筛管129的过程中,有一部分砂被筛管阻塞,观测相机181会实时移动观测、记录井筒内油水流动过程,并通过控制设备装置模拟不同封隔井段的油水流入动态的剖面。
[0114]
s6、携带砂的液体经出液口127排出后,经过过滤器93进行过滤,经过三相分离器97,或者无砂的液体经出液口127排出后,直接进入三相分离器97,分离后油经过回油泵98回到供油罐21,水经过回水泵99回到供水罐81,实现流体重复利用;或者无砂的液体经出液口127排出后,直接进入三相分离器97,
[0115]
s7、实验结束,关闭封隔所有设备,清理井筒。
[0116]
在实验前,还需要根据实验目的,对测试设备的外管组件11和内管组件12进行组装,外管组件11通过进口法兰116、中间法兰117、出口法兰118分别与第一外管111、第二外管112、第三外管113连接来实现外管组件11的组装,内管组件12通过第一防砂筛管128、第二防砂筛管1210、第三防砂筛管129、第一控水装置124、第二控水装置125、第三控水装置126分别与第一内管121、第二内管122、第三内管123连接,实现内管组件12的组装,然后再
通过在对应位置安装封隔装置14,来组装成符合实验需求的测试设备。
[0117]
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
[0118]
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
[0119]
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
[0120]
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献