一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

电解用电极的制作方法

2022-02-22 08:51:54 来源:中国专利 TAG:


1.相关申请的交叉引用
2.本技术要求于2020年1月9日提交的韩国专利申请no.10-2020-0003208的优先权,该专利申请的公开内容通过引用并入本说明书中。
3.技术领域
4.本发明涉及一种可以改善过电压的电解用电极和制备该电解用电极的方法。


背景技术:

5.通过低成本的盐水如海水的电解制备氢氧化物、氢气和氯气的技术是公知的。这种电解工艺也被称为氯碱工艺,并且可以被认为是经过数十年已经在商业操作中证明其性能和技术可靠性的方法。
6.对于盐水的电解,目前最广泛使用的方法是离子交换膜法,其中,将离子交换膜安装在电解槽中以将电解槽分为阳离子室和阴离子室,并且使用盐水作为电解质以在阳极得到氯气并在阴极得到氢气和苛性钠。
7.盐水的电解通过如下面电化学反应式中所示的反应进行。
8.阳极反应:2cl-→
cl2 2e-(e0= 1.36v)
9.阴极反应:2h2o 2e-→
2oh- h2(e0=-0.83v)
10.总反应:2cl- 2h2o

2oh- cl2 h2(e0=-2.19v)
11.在盐水的电解中,除了盐水电解所需要的理论电压之外,电解电压还必须考虑阳极的过电压、阴极的过电压、由于离子交换膜的电阻引起的电压和由于阳极与阴极之间的距离引起的电压,并且在这些电压中由电极引起的过电压是重要的变量。
12.因此,已经研究能够降低电极的过电压的方法,其中,例如,已经开发一种被称为dsa(尺寸稳定阳极)的贵金属类电极用作阳极,并且需要开发一种具有耐久性和低的过电压的优异材料用于阴极。
13.已经主要使用不锈钢或镍作为阴极,并且,近来,为了降低过电压,已经研究了通过在不锈钢或镍的表面涂覆氧化镍、镍和锡的合金、活性炭和氧化物的组合、氧化钌或铂来使用不锈钢或镍的方法。
14.此外,为了通过控制活性材料的组成来增加阴极的活性,通过使用铂族元素如钌和镧系元素如铈来控制组成的方法也已经被研究过。然而,发生了过电压现象,并且发生了由于反向电流引起的劣化的问题。
15.现有技术文献
16.(专利文献1)jp2003-277967a


技术实现要素:

17.技术问题
18.本发明的一个方面提供一种电解用电极,其通过改善电极表面涂层的电性能而可
以降低过电压。
19.技术方案
20.根据本发明的一个方面,提供一种电解用电极,包括:金属基底层;和涂层,该涂层包含钌氧化物、铈氧化物和镍氧化物,其中,所述涂层形成在所述基底层的至少一个表面上。
21.根据本发明的另一方面,提供一种制备电解用电极的方法,该方法包括的步骤为:在金属基底的至少一个表面上涂布涂料组合物;和通过干燥和热处理在其上涂布有涂料组合物的金属基底来涂层化,其中,所述涂料组合物包含钌前体、铈前体和镍前体。
22.有益效果
23.本发明提供一种电解用电极,其通过在涂层中一起包含镍氧化物和铈氧化物,可以表现出优异的过电压和优异的碱性耐久性同时保持优异的导电性。
具体实施方式
24.下文中,将更详细地描述本发明。
25.应当理解的是,本说明书和权利要求书中使用的词语或术语不应理解为在常用字典中定义的含义。还应当理解的是,词语或术语应当基于发明人可以适当地定义词语或术语的含义以便最好地说明发明的原则,理解为具有与它们在相关技术的背景中和在本发明的技术构思中的含义一致的含义。
26.电解用电极
27.本发明提供一种电解用电极,包括:金属基底层;和涂层,该涂层包含钌氧化物、铈氧化物和镍氧化物,其中,所述涂层形成在所述基底层的至少一个表面上。
28.所述金属基底可以是镍、钛、钽、铝、铪、锆、钼、钨、不锈钢或它们的合金,并且,在这些金属中,所述金属基底可以优选是镍。在本发明的电解用电极中,在使用上述类型的金属基底的情况下,可以为电极提供优异的耐久性和机械强度。
29.在本发明的电解用电极中,所述涂层包含钌氧化物。钌氧化物作为活性材料起到向涂层提供钌元素的作用,其中,在电解用电极的涂层中使用钌氧化物的情况下,电极性能随时间的变化小,同时过电压现象得到改善,并且,随后,可以使单独的活化过程最小化。钌氧化物包括所有类型的钌元素与氧原子键合的氧化物,并且具体地,可以是二氧化物或四氧化物。
30.在本发明的电解用电极中,所述涂层包含铈氧化物,铈氧化物起到向所述电解用电极的催化剂层提供铈元素的作用。在活化或电解过程中,通过提高电解用电极的耐久性,由铈氧化物提供的铈元素可以使作为电解用电极的涂层中的活性材料的钌元素的损失最小化。
31.具体地,在电解用电极的活化或电解的过程中,催化剂层中的包含钌元素的粒子在不改变其结构的情况下成为金属元素,或者部分地水合并且被还原为活性物质。此外,由于催化剂层中的包含铈元素的粒子将其结构改变为针状,因此,粒子充当保护材料,防止催化剂层中的包含钌元素的粒子物理脱离,并且,由此,可以改善电解用电极的耐久性以防止涂层中的钌元素的损失。铈氧化物包括所有类型的铈元素与氧原子键合的氧化物,并且具体地,可以是(ii)、(iii)或(iv)的氧化物。
32.涂层中包含的钌元素与铈元素之间的摩尔比可以在100:2至100:40,例如,在100:5至100:20的范围内。在涂层中包含的钌元素与铈元素的摩尔比在上述范围内的情况下,电解用电极的耐久性与导电性之间的平衡可以优异。
33.由于上述铈氧化物表现出相对低的导电性,因此需要在由铈氧化物提高的耐久性和由铈氧化物降低的导电性之间保持极好的平衡。在本发明中,在将涂层中的铈氧化物的一部分替换为具有比铈氧化物更好的导电性的镍氧化物的情况下,由于在保持铈氧化物耐久性提高效果的同时导电性也优异,因此已经发现,可以实现耐久性和导电性之间的上述优异平衡。因此,本发明提供的电解用电极的涂层中含有镍氧化物。
34.由于镍氧化物即使在氧化物状态下也表现出相对优异的导电性,其在改善电解用电极的过电压的同时对耐久性几乎没有影响。镍氧化物包括所有类型的镍元素与氧原子键合的氧化物,并且特别地可以是一氧化物。此外,由于镍氧化物可以通过与铈氧化物一起包含在涂层中来抑制由铈氧化物引起的导电性降低,因此镍氧化物和铈氧化物必须同时包含在单个涂层中。如果在使用多个涂层使得镍氧化物和铈氧化物包含在彼此不同的涂层中的情况下,不仅不能获得镍氧化物的上述优点,而且由于镍和铈的物理特性不同,也可能出现涂层之间的分层问题。
35.此外,可以考虑使用已知具有优异导电性的另一种金属的氧化物,例如,诸如铁氧化物的金属氧化物来代替镍氧化物,但是,在使用上述金属氧化物代替镍氧化物的情况下,可以降低铈氧化物防止钌元素损失的效果。具体而言,如果将包含钌前体、镍前体和铈前体的涂料组合物施加到基底然后烧结,由于前体分别转化为钌氧化物、镍氧化物和铈氧化物,镍不干扰钌氧化物和铈氧化物的形成,但其他金属,例如锶(sr)、钡(ba)、钒(v)和镨(pr)通过分别形成混合的氧化物,例如sr2ceo4、baceo3、cevo3和pr3ruo,会降低催化活性。
36.包含在涂层中的铈元素和镍元素之间的摩尔比可以在10:90至90:10,例如25:75至75:25或50:50至75:25的范围内。在铈元素和镍元素之间的摩尔比在上述范围内的情况下,铈氧化物的耐久性提高效果和镍氧化物的导电性提高效果之间的平衡可以是优异的。
37.此外,包含在涂层中的钌元素和镍元素之间的摩尔比可以在100:2至100:20,例如100:5至100:15的范围内。在上述范围内可以最大化通过镍氧化物改善过电压的效果。
38.在本发明的电解用电极中,所述涂层还可以包含铂族氧化物。铂族氧化物是指铂族元素中除了上述钌以外的其它元素的氧化物,具体可以是铑氧化物、钯氧化物、锇氧化物、铱氧化物或铂氧化物。由铂族氧化物提供的铂族元素可以像钌元素一样充当活性材料,并且,在涂层中一起包含铂族氧化物和钌氧化物的情况下,在电极的耐久性和过电压方面可以表现出更好的效果。铂族氧化物包括所有类型的铂族元素与氧原子键合的氧化物,并且,具体地,可以是二氧化物或四氧化物,并且优选地铂族氧化物是铂氧化物。
39.涂层中包含的钌元素与铂族元素之间的摩尔比可以在100:2至100:20,例如,在100:5至100:15的范围内。在涂层中包含的钌元素与铂族元素之间的摩尔比在上述范围内的情况下,在改善耐久性和过电压方面是理想的,其中,在铂族元素的含量低于上述范围的情况下,耐久性和过电压会降低,并且,在铂族元素的含量高于上述范围的情况下,在经济效率方面不利。
40.制备电解用电极的方法
41.本发明提供一种制备电解用电极的方法,该方法包括以下步骤:在金属基底的至
少一个表面上涂布涂料组合物;和通过干燥和热处理在其上涂布有所述涂料组合物的金属基底而涂层化,其中,所述涂料组合物包含钌前体、铈前体和镍前体。
42.在本发明的制备电解用电极的方法中,所述金属基底可以与先前描述的电解用电极的金属基底相同。
43.在本发明的制备电解用电极的方法中,所述涂料组合物可以包含钌前体、铈前体和镍前体。在涂布之后,前体通过在热处理步骤中被氧化而转化为氧化物。
44.钌前体的使用可以没有特别地限制,只要其是能够形成钌氧化物的化合物即可,可以是,例如,钌的水合物、氢氧化物、卤化物或氧化物,并且可以具体是选自六氟化钌(ruf6)、氯化钌(iii)(rucl3)、氯化钌(iii)水合物(rucl3·
xh2o)、溴化钌(iii)(rubr3)、溴化钌(iii)水合物(rubr3·
xh2o)、碘化钌(rui3)和乙酸钌中的至少一种。当使用上面列出的钌前体时,钌氧化物的形成可以容易。
45.所述铈前体可以使用只要是能够形成铈氧化物的化合物即可,没有特别限制,例如可以是铈元素的水合物、氢氧化物、卤化物或氧化物,具体可以是选自硝酸铈(iii)六水合物(ce(no3)3·
6h2o)、硫酸铈(iv)四水合物(ce(so4)2·
4h2o)和氯化铈(iii)七水合物(cecl3·
7h2o)中的至少一种铈前体。当使用上面列出的铈前体时,铈氧化物的形成可以容易。
46.可以使用镍前体而没有特别限制,只要其是能够形成镍氧化物的化合物即可,并且例如,镍前体可以是选自氯化镍(ii)、硝酸镍(ii)、硫酸镍(ii)、醋酸镍(ii)和氢氧化镍(ii)中的至少一种。当使用上面列出的镍前体时,镍氧化物的形成可以容易。
47.涂料组合物还可以包含用于在涂层中形成铂族氧化物的铂族前体。铂族前体可以使用只要是能够形成铂族氧化物的化合物即可,没有特别限定,例如可以是铂族元素的水合物、氢氧化物、卤化物或氧化物,具体可以是选自氯铂酸六水合物(h2ptcl6·
6h2o)、二胺二硝基铂(pt(nh3)2(no)2)、氯化铂(iv)(ptcl4)、氯化铂(ii)(ptcl2)、四氯铂酸钾(k2ptcl4)和六氯铂酸钾(k2ptcl6)中的至少一种铂前体。当使用上面列出的铂族前体时,铂族氧化物的形成会容易。
48.在本发明的制备电解用电极的方法中,所述涂料组合物还可以包含胺类添加剂,以在涂层与金属基底之间提供强粘合力。具体地,胺类添加剂可以改善涂层中包含的钌元素、铈元素和镍元素之间的键合力,并且可以控制包含钌元素的粒子的氧化态以制备更适合于反应的形式的电极。
49.本发明中使用的胺类添加剂由于在具有胺基的同时在水中的溶解性高,因此特别适合用于形成涂层。本发明中可以使用的胺类添加剂包括三聚氰胺、氨、尿素、1-丙胺、1-丁胺、1-戊胺、1-庚胺、1-辛胺、1-壬胺或1-十二烷胺,并且可以使用选自它们中的至少一种。
50.在本发明的电解用电极中,涂层中包含的钌前体的钌元素和胺类添加剂可以以100:30至100:90,例如,以100:50至100:70的摩尔比被包含。在胺类添加剂以小于上述摩尔比的范围被包含的情况下,通过添加剂改善键合力的效果不显著,并且,在胺类添加剂以大于上述摩尔比的范围被包含的情况下,由于在涂布液中会容易产生沉淀物,因此,不仅涂层的均匀性会降低,而且还会阻碍钌氧化物的功能。
51.在本发明的制备电解用电极的方法中,可以使用醇类溶剂作为涂料组合物的溶剂。在使用醇类溶剂的情况下,上述组分容易溶解,并且即使在涂布涂料组合物之后在形成
涂层的步骤中,也可以保持各个组分的粘合力。优选地,可以使用异丙醇和丁氧基乙醇中的至少一种作为溶剂,并且,更优选地,可以使用异丙醇与丁氧基乙醇的混合物。与单独使用异丙醇和丁氧基乙醇的情况相比,在将异丙醇与丁氧基乙醇混合并且使用的情况下,可以进行均匀涂布。
52.在本发明的制备方法中,所述制备方法可以包括在进行涂布之前对金属基底进行预处理的步骤。
53.所述预处理可以包括通过化学蚀刻、喷砂或热喷涂在金属基底的表面上形成不规则体。
54.所述预处理可以通过对金属基底的表面喷砂以形成细小的不规则体并进行盐或酸处理来进行。例如,所述预处理可以以如下方式进行:用氧化铝对金属基底的表面进行喷砂以形成不规则体,浸渍在硫酸水溶液中,洗涤,并且干燥,以在金属基底的表面上形成细小的不规则体。
55.对涂布没有特别地限制,只要可以将催化剂组合物均匀地涂布在金属基底上并且可以通过本领域中已知的方法进行即可。
56.涂布可以通过选自刮刀涂布、压铸、逗号涂布、丝网印刷、喷涂、静电纺丝、辊涂和刷涂中的任意一种方法进行。
57.干燥可以在50℃至300℃下进行5分钟至60分钟,并且可以优选在50℃至200℃下进行5分钟至20分钟。
58.当满足上述条件时,可以使能量消耗最小化,同时可以充分除去溶剂。
59.热处理可以在400℃至600℃下进行1小时以下,并且可以优选在450℃至550℃下进行5分钟至30分钟。
60.当满足上述条件时,不会影响金属基底的强度,同时容易除去催化剂层中的杂质。
61.涂层化可以通过顺序地重复涂布、干燥和热处理来进行,使得每单位面积(m2)的金属基底的钌氧化物的量为10g以上。即,将催化剂组合物涂布在金属基底的至少一个表面上,干燥,并且热处理之后,可以通过重复地涂布、干燥和热处理已经涂布有第一催化剂组合物的金属基底的一个表面来进行根据本发明的另一实施方案的制备方法。
62.下文中,将根据实施例和实验例更详细地描述本发明,但是本发明不限于这些实施例和实验例。然而,本发明可以以许多不同的形式来实施,并且不应理解为局限于本文中阐述的实施例。而是,提供这些示例性实施例使得本说明书将是透彻和完整的,并且将向本领域技术人员充分传达本发明的范围。
63.材料
64.在本实施例中,使用由ildong gold mesh制造的镍网基底(ni纯度为99%以上,200μm)作为金属基底,使用氯化钌(iii)水合物(rucl3·
nh2o)作为钌前体,氯化铂(iv)用作铂族前体,硝酸铈(iii)六水合物(ce(no3)3·
6h2o)用作铈前体,氯化镍六水合物(nicl2·
6h2o)用作镍前体。尿素用作胺类添加剂。
65.此外,将异丙醇和2-丁氧基乙醇以1:1的体积比混合的混合物用作涂料组合物的溶剂。
66.金属基底的预处理
67.在金属基底上形成涂层之前,在0.4mpa的压力下用氧化铝(白色氧化铝,f120)喷
砂所述基底的表面之后,将基底放入到被加热至80℃的5m的h2so4水溶液中,处理3分钟,然后用蒸馏水洗涤以完成预处理。
68.实施例1
69.在1g钌前体、0.3135g铈前体、0.057g镍前体和0.1625g铂族前体以5:0.75:0.25:0.5的摩尔比混合在10ml上述材料的混合溶剂中,使钌浓度为100g/l之后,以3.13的摩尔比加入0.181g尿素作为胺类添加剂。将混合溶液在50℃下搅拌过夜以制备涂料组合物。将涂料组合物涂布在预处理过的镍基底上,将涂布后的镍基底放入180℃的对流干燥箱中干燥10分钟,然后放入500℃的电加热炉中,热处理10分钟。上述涂布、干燥和热处理过程重复9次后,通过在电加热炉中在500℃下进行热处理1小时,最终制备最终的电解用电极。
70.实施例2
71.除了实施例1中钌前体、铈前体、镍前体和铂族前体的摩尔比为5:0.5:0.5:0.5之外,以相同方式制备电解用电极。
72.实施例3
73.除了在实施例1中钌前体、铈前体、镍前体和铂族前体的摩尔比为5:0.25:0.75:0.5之外,以相同方式制备电解用电极。
74.实施例4
75.除了在实施例1中钌前体、铈前体、镍前体和铂族前体的摩尔比为5:1:0.25:0.5之外,以相同方式制备电解用电极。
76.实施例5
77.除了在实施例1中钌前体、铈前体、镍前体和铂族前体的摩尔比为5:1:0.25:0之外,以相同方式制备电解用电极。
78.比较例1
79.除了在实施例1中钌前体、铈前体、镍前体和铂族前体的摩尔比为5:1:0:0.5之外,以相同方式制备电解用电极。
80.比较例2
81.除了在实施例1中钌前体、铈前体、镍前体和铂族前体的摩尔比为5:1:0:0之外,以相同方式制备电解用电极。
82.实施例和比较例中制备的电极涂层的组分的摩尔比总结在下面表1中。
83.[表1]
[0084] 实施例1实施例2实施例3实施例4实施例5比较例1比较例2钌前体5555555铈前体0.750.50.251111镍前体0.250.50.750.250.2500铂族(铂)前体0.50.50.50.500.50
[0085]
实验例1.制备的电解用电极的性能检查
[0086]
为了确认实施例和比较例中制备的电极的性能,在氯碱电解中使用半电池进行阴极电压测量试验。电解液采用32%naoh水溶液,对电极采用铂(pt)线,参比电极采用hg/hgo电极。将制备好的电极放入电解液后,在-0.62a/cm2的恒流密度下活化电极1小时,然后将各电极的性能与第一小时的电位值进行比较。其结果总结在下面表2中。
[0087]
[表2]
[0088][0089]
从以上结果可以确认,当涂层中进一步包含镍氧化物时,出现了改善过电压的效果,并且从实施例5和比较例1之间的比较,可以确认镍组分即使在比铂更少量的情况下,也表现出类似水平的过电压改善效果。
[0090]
实验例2.电极涂层的xps分析
[0091]
在实施例和比较例中制备的电极中,通过x射线光电子能谱(xps)分析实施例1、2和4中制备的电极和比较例1中制备的电极的表面以检查涂层中各组分的量。其结果示于下面表3中。
[0092]
[表3]
[0093] 实施例1实施例2实施例4比较例1ru(%)2.3
±
0.22.1
±
0.22.7
±
0.92.3
±
0.2ce(%)5.1
±
0.33.0
±
0.57.2
±
0.27.5
±
0.1ni(%)5.6
±
0.59.0
±
1.15.4
±
1.11.7
±
0.3pt(%)3.6
±
0.023.8
±
0.33.3
±
0.23.4
±
0.1c(%)41.0
±
0.738.1
±
2.439.2
±
1.945.6
±
0.9o(%)42.4
±
0.244.0
±
0.940.3
±
1.336.3
±
0.4
[0094]
从以上结果可以确认,在实施例中,电极的表面顺利地用镍组分涂布。比较例中检测出的少量镍成分被认为是基底的镍成分所致。
[0095]
实验例3.电解用电极的耐久性评价
[0096]
电解用电极的涂层中的钌氧化物在电解过程中转化为金属钌或羟基氧化钌(ruo(oh)2),并且在产生反向电流的情况下,羟基氧化钌被氧化成ruo
42-溶解在电解液中。因此,可以评价为越晚达到反向电流产生条件,电极的耐久性越好。从这一点来看,在激活实施例中制备的电极后,建立反向电流产生条件,然后测量电压随时间的变化。具体而言,将电极尺寸设置为10mm
×
10mm,并在80℃的温度下在32wt%氢氧化钠水溶液的电解液中,在-0.1a/cm2的电流密度下20分钟,在-0.2a/cm2的电流密度下3分钟,在-0.3a/cm2的电流密度下3分钟,并且在-0.4a/cm2的电流密度下30分钟,通过电解产生氢气来活化电极。其后,作为反向电流产生条件,测量电压在0.05ka/m2下达到-0.1v的时间,并且基于市售电极(asahi-kasei corporation)计算相对达到时间。其结果示于下面表4中。
[0097]
[表4]
[0098][0099]
从以上结果可以确认,本发明的实施例的电极由于达到反向电流的时间比常规市
售电极更长而表现出优异的耐久性。具体而言,实施例1至4的电极均表现出比常规市售电极更好的耐久性,特别地,可以证实,其中镍和铈之间的摩尔比为3:1至1:1的实施例1和2,表现出最好的耐久性。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献