一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

配位自组装结合延迟相变制备CoFe-PBA@PVDF复合膜的方法与其用途与流程

2022-02-22 18:06:03 来源:中国专利 TAG:

配位自组装结合延迟相变制备cofe-pba@pvdf复合膜的方法与其用途
技术领域
1.本发明属于环境功能材料制备技术领域,具体涉及cofe-pba@pvdf复合膜及其制备方法与用途。


背景技术:

2.水资源的短缺和水污染的加剧是制约人类社会进步和经济发展的环境问题。污水处理是实现水资源高效利用的重要途径之一。膜处理技术以其节能、性价比高的优点被广泛应用于各个领域。然而,膜的表面污染一直是制约膜技术广泛应用的瓶颈问题。因此,提高膜的表面防污性能是获得高性能膜的主要策略之一,而膜表面的微观结构和防污机理是决定膜表面防污性能的两个关键因素。借鉴自然规律,创新膜表面结构的调控,制备抗污染自清洁分离膜,提高膜的分离效率,具有重要的意义和价值。
3.在众多高分子材料中,pvdf具有较高的机械强度、良好的热稳定性、耐化学性和成膜性能,是制备超滤和微滤膜最有前途的膜材料之一。但pvdf膜具有较高的疏水性,容易吸附有机物,造成膜污染。因此,设计和合成防污染、高通量的pvdf复合膜具有重要意义。近年来,采用非溶剂诱导法制备聚偏氟乙烯(pvdf)膜已经被广泛报道。共混、涂覆和接枝亲水组分是实现表面亲水性的常用方法。但在共混、包覆、接枝等方法中也存在一些问题。例如,共混法中纳米粒子的加入必然会影响相变过程中纳米粒子的分布和膜孔的结构。表面涂层的主要问题是涂层的不稳定性。由于涂层的物理吸附较弱,在操作和清洗过程中可能会脱落。表面接枝改性会影响纳米粒子的性能。因此,设计一种合理的方法,既能保证纳米粒子在膜中的均匀分散,又能充分反映其性质就显得尤为重要。
4.采用溶剂法和非溶剂法的延迟相变法制备聚偏氟乙烯(pvdf)膜的报道偏少。同时,配位自组装与延迟相转换相结合是制备具有超亲水、水下超疏油以及催化自清洁性能的pvdf复合膜的新途径。在聚合物膜中加入无机纳米颗粒可提高膜的亲水性和防污性能。普鲁士蓝类似物(pba)是一类含金属配位聚合物,近年来被认为是pms的活化催化剂。关于pba-aops在催化体系中的应用已有很多报道,但大多集中在对污染物的去除上。然而,通过在pvdf膜上原位生长pba制备具有亲水性、乳液分离性能、防污性能和催化自清洁性能的新型pvdf复合膜的研究还很少。因此,我们创新性地将延迟相变法与配位自组装法相结合,制备了具有催化自清洁性能的超亲水水下超疏油的pba@pvdf复合膜。


技术实现要素:

5.有鉴于此,本发明的目的在于提供一种cofe-pba@pvdf复合膜的制备方法与用途。本发明利用延迟相变诱导原位金属自组装膜技术解决了无机纳米颗粒在膜通道和膜表面分布不均匀和膜污染的问题。通过调节无机纳米粒子的添加量和凝固浴中dmac和去离子水的比例,比较了不同变量对复合膜性能的影响。通过润湿性测试、错流过滤和分离效率测试,交替测试石油醚乳液和水随时间的通量,检测膜的抗污效果。通过动态错流催化实验检
测pvdf复合膜对亚甲基蓝的快速催化降解效果,以及采用静态催化探究pvdf复合膜对不同染料即罗丹明b、四环素的催化降解情况。
6.为了实现上述目的,本发明提供如下技术方案:
7.本发明采用co(no3)2·
6h2o、pvp和pvdf粉末以及dmac做溶剂制备铸膜液;用铁氰化钾为溶质用作配位自组装,溶剂采用不同比例的dmac和去离子水制备凝固浴;将除去气泡的铸膜液刮膜后,快速放入凝固浴中完成相转化成膜,清洗,浸泡后,制得cofe-pba@pvdf复合膜。
8.此外,本发明还提供了上述cofe-pba@pvdf复合膜的制备方法,所述制备方法具体包括如下步骤:
9.(1)将pvdf粉末混合一定量的pvp做制孔剂,并添加不同浓度的co(no3)2·
6h2o作为配位自组装的前驱体,dmac做溶剂,在温度为50℃条件下磁力搅拌6h,制备铸膜液;
10.(2)将铁氰化钾为溶质用作配位自组装,溶剂采用不同比例的dmac和去离子水制备凝固浴。
11.(3)将步骤(1)中所制备的铸膜液静置除去气泡,在平板刮膜机上用200μm刮膜刀刮膜,并快速放入步骤(2)中的凝固浴中完成膜的相转化,并实现膜表面无机纳米粒子cofe-pba的形成,且该膜用去离子水清洗,去离子水浸泡,制得cofe-pba@pvdf复合膜。
12.步骤(1)中,所述铸膜液中,各成分pvdf、pvp、co(no3)2·
6h2o和dmac的用量比例为4.2g:0.1g:0.5~1.5g:30ml,pvdf的型号是1015型。
13.步骤(2)中,所述凝固浴中铁氰化钾的浓度为30mg/ml。步骤(2)中,所述凝固浴中dmac和去离子水的体积比为0~1:1~9。
14.步骤(3)中,所述刮膜过程用200μm的刮膜刀,且成膜需用去离子水清洗3遍,去离子水浸泡12小时。
15.本发明还提供了上述制备方法制备的cofe-pba@pvdf复合膜在油水乳液分离中的应用,尤其应用在分离纯化含油乳液。
16.本发明还提供了上述制备方法制备的cofe-pba@pvdf复合膜在亚甲基蓝、罗丹明b或四环素催化降解中的应用。
17.与现有技术相比,本发明的有益效果是:
18.这种简单的延迟相变诱导原位金属自组装膜技术解决了无机纳米颗粒在膜通道和膜表面分布不均匀和膜污染问题。且这种制膜方法有效地解决了纳米粒子与聚合物相容性差的问题。同时,pba纳米颗粒在pvdf中原位生长以及pvp与金属离子的配位有效抑制了纳米颗粒从聚合物基体中溢出。实验结果表明,该方法制备的pvdf复合膜在水下能够实现超疏油性能,对二氯乙烷、石油醚、甲苯、豆油和正己烷的水包油乳液分离效率高达99.8%。具有优异的防污性能,能催化降解水中各种有机污染物并具有良好的机械性能。动态催化探究,在错流1h的实验中,在平均400l m-2
h-1
的恒定流量下,亚甲基蓝的去除率保持在99%以上;在静态催化环境中该膜对亚甲基蓝、罗丹明b、四环素的催化降解效率也可达99%以上。本研究为有机-无机聚合物防污膜的均相制备提供了一种新的方法。
附图说明
19.图1是本发明所制备的m0和m4的sem图;
20.图2是本发明所制备的m4的xrd图;
21.图3是本发明所制备的m4的水下油滴接触角示意图;
22.图4是m4对水包油乳液的分离效率图。
23.图5是cofe-pba@pvdf复合膜m4、m3、m5对亚甲基蓝的动态催化降解效率图;
24.图6是cofe-pba@pvdf复合膜m4的自清洁性能探究图。
具体实施方式
25.通过下面的实施例可以对本发明进行进一步的描述,然而,本发明的范围并不限于下述实施例。本发明对试验中所使用到的材料以及试验方法进行一般性和/或具体的描述。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照厂商所建议的条件实施检测。下列实施例中所用的试剂均可以通过商业途径购买。
26.实施例1
27.将pvdf 4.2g,pvp 0.1g,co(no3)2·
6h2o 1g,dmac体积为30ml的铸膜液50℃条件下搅拌均匀后,静置除去气泡,在平板刮膜机上用200μm的刮膜刀刮膜,快速放入铁氰化钾的浓度为30mg/ml,dmac:water为1:4的凝固浴中,常温下实现相转化。等待膜成型且表面无机粒子配位完成后,用去离子水冲洗表面多余的凝固浴液体和表面不稳定的普鲁士蓝类似物(pba),并在去离子水中浸泡12h,即得到cofe-pba@pvdf复合膜标注为m4。
28.采用扫描电子显微镜(sem)观察制备的cofe-pba@pvdf复合膜与改性前石英膜的表面形貌特征。图1是制备的膜m0和m4的sem图;图中,m0即纯的pvdf膜,m4即制备的cofe-pba@pvdf复合膜;由图1可以看出,纯的pvdf膜表面没有cofe-pba纳米粒子的存在;而cofe-pba@pvdf复合膜表面含有丰富的cofe-pba纳米粒子。
29.对制备的cofe-pba@pvdf复合膜m4中元素的价键进行分析,图2是制备的cofe-pba@pvdf复合膜m4的xrd图;由图2可见,xrd图中出现有cofe-pba和pvdf的峰结构,进一步说明cofe-pba成功地生长在pvdf膜表面上。通过光学接触角测量仪测试制备的cofe-pba@pvdf复合膜水下油滴接触角的变化情况;
30.图3是制备的cofe-pba@pvdf复合膜m4的水下油滴接触角示意图;由图3可见,制备的复合膜接触角达到156.7
°
,其在水下表现出超疏油特性,可以实现油水乳液分离的目的。
31.实施例2
32.将pvdf 4.2g,pvp 0.1g,co(no3)2·
6h2o 0.5g,dmac体积为30ml的铸膜液50℃条件下搅拌均匀后,静置除去气泡,使用平板刮膜机上用200μm的刮膜刀刮膜,快速放入铁氰化钾的浓度为30mg/ml,dmac:water为1:4的凝固浴中,常温下实现相转化。等待膜成型且表面无机粒子配位完成后,用去离子水冲洗表面多余的凝固浴液体和表面不稳定的普鲁士蓝类似物(pba),并在去离子水中浸泡12h,即得到cofe-pba@pvdf复合膜标注为m3。
33.实施例3
34.将pvdf 4.2g,pvp 0.1g,co(no3)2·
6h2o 1.5g,dmac体积为30ml的铸膜液50℃条件下搅拌均匀后,静置除去气泡,使用平板刮膜机上用200μm的刮膜刀刮膜,快速放入铁氰化钾的浓度为30mg/ml,dmac:water为1:4的凝固浴中,常温下实现相转化。等待膜成型且表面无机粒子配位完成后,用去离子水冲洗表面多余的凝固浴液体和表面不稳定的普鲁士蓝类似物(pba),并在去离子水中浸泡12h,即得到cofe-pba@pvdf复合膜标注为m5。
35.实施例4
36.将pvdf 4.2g,pvp 0.1g,co(no3)2·
6h2o 1g,dmac体积为30ml的铸膜液50℃条件下搅拌均匀后,静置除去气泡,使用平板刮膜机上用200μm的刮膜刀刮膜,快速放入铁氰化钾的浓度为30mg/ml,dmac:water为1:9的凝固浴中,常温下实现相转化。等待膜成型且表面无机粒子配位完成后,用去离子水冲洗表面多余的凝固浴液体和表面不稳定的普鲁士蓝类似物(pba),并在去离子水中浸泡12h,即得到cofe-pba@pvdf复合膜标注为m6。
37.实施例5
38.将pvdf 4.2g,pvp 0.1g,co(no3)2·
6h2o 1g,dmac体积为30ml的铸膜液50℃条件下搅拌均匀后,静置除去气泡,使用平板刮膜机上用200μm的刮膜刀刮膜,快速放入铁氰化钾的浓度为30mg/ml,dmac:water为0:1的凝固浴中,常温下实现相转化。等待膜成型且表面无机粒子配位完成后,用去离子水冲洗表面多余的凝固浴液体和表面不稳定的普鲁士蓝类似物(pba),并在去离子水中浸泡12h,即得到cofe-pba@pvdf复合膜标注为m7。
39.对比例探究
40.对比例1
41.将pvdf 4.2g,pvp 0g,co(no3)2·
6h2o 0g,dmac体积为30ml的铸膜液50℃条件下搅拌均匀后,静置除去气泡,在平板刮膜机上用200μm的刮膜刀刮膜,快速放入铁氰化钾的浓度为30mg/ml,dmac:water为1:4的凝固浴中,常温下实现相转化。等待膜成型且表面无机粒子配位完成后,用去离子水冲洗表面多余的凝固浴液体,并在去离子水中浸泡12h,即得到纯的pvdf膜标注为m0。
42.对比例2
43.将pvdf 4.2g,pvp 0.1g,co(no3)2·
6h2o 0g,dmac体积为30ml的铸膜液50℃条件下搅拌均匀后,静置除去气泡,使用平板刮膜机采用200μm的刮膜刀刮膜,快速放入铁氰化钾的浓度为30mg/ml,dmac:water为1:4的凝固浴中,常温下实现相转化。等待膜成型且表面无机粒子配位完成后,用去离子水冲洗表面多余的凝固浴液体,并在去离子水中浸泡12h,即得到pvdf膜标注为m1。
44.对比例3
45.将pvdf 4.2g,pvp 0g,co(no3)2·
6h2o 1g,dmac体积为30ml的铸膜液50℃条件下搅拌均匀后,静置除去气泡,使用平板刮膜机上用200μm的刮膜刀刮膜,快速放入铁氰化钾的浓度为30mg/ml,dmac:water为1:4的凝固浴中,常温下实现相转化。等待膜成型且表面无机粒子配位完成后,用去离子水冲洗表面多余的凝固浴液体,并在去离子水中浸泡12h,即得到cofe-pba@pvdf复合膜标注为m2。
46.cofe-pba@pvdf复合膜在油水乳液分离中的应用测试:
47.将实施例1中制得的cofe-pba@pvdf复合膜m4固定到直径为4.5cm的错流过滤装置中,在0.05mpa的压力下,将去离子水抽滤并过滤0.5h,达到稳定的流量,然后评估去离子水和各种乳剂的流量。二氯乙烷、石油醚、甲苯、豆油和正己烷的水包油乳液都以(1%)为例测试分离性能。油水分离效率按以下公式计算:
[0048][0049]
其中,separation efficiency为分离效率,c
feed
和c
permeate
分别表示二氯乙烷、石
油醚、甲苯、正己烷和豆油的各种乳化液中以及相应的渗透液中油的浓度。
[0050]
图4是cofe-pba@pvdf复合膜对石油醚/水乳状液的分离效率和通量图。如图4所示,采用m4膜对石油醚乳状液、二氯乙烷乳状液、甲苯乳状液、正己烷乳状液和大豆油乳状液进行了测试。分离效率均能达到99%以上,通量保持在350~440lm-1
h-1
之间。只有大豆油乳化液的通量较低,这是由于大豆油粘度较高所致。
[0051]
cofe-pba@pvdf复合膜的动态催化性能测试:
[0052]
本实施例中以实施例1、2、3所制备的cofe-pba@pvdf复合膜m4、m3、m5为例,利用活化过硫酸盐技术降解有机染料亚甲基蓝,测试其对含有亚甲基蓝的过硫酸氢钾溶液的截留性能,探究其在有机物染料降解中的应用。将m4、m3、m5依次固定到直径为4.5cm的错流过滤装置中,在0.05mpa的压力下,对含有亚甲基蓝的过硫酸氢钾溶液(10mg/l亚甲基蓝,10mmol/l过硫酸氢钾)进行过滤,用紫外可见分光光度计度(mapada,uv-1800pc)进行分析测试,分析测试其是否含有波长为664nm的亚甲基蓝。前10min内每5min取一次样,10min以后每10min取一次样,测量不同膜动态催化过滤亚甲基蓝的通量变化和催化降解效率。
[0053]
图5是对染料亚甲基蓝降解和通量测试图;如图5所示,m3、m4和m5膜在前5min分别获得了高mb去除率(86.6%、92.7%和97.8%)的瞬时催化。在保持高渗透率(340~385lm-2
h-1
)的情况下,60min后达到催化平衡(》99%),说明制备的cofe-pba@pvdf复合膜在过硫酸氢钾(pms)的作用下具有显著的催化降解亚甲基蓝溶液的效果,可应用于有机染料的降解。
[0054]
cofe-pba@pvdf复合膜的静态催化性能测试:
[0055]
本实施例中以实施例1所制备的cofe-pba@pvdf复合膜m4为例,进行静态催化测试,利用活化过硫酸盐技术降解有机染料亚甲基蓝(10mg/l)、罗丹明b(10mg/l)、四环素(10mg/l),探究其对含有亚甲基蓝(10mg/l)、罗丹明b、四环素的过硫酸氢钾溶液(10mmol/l)的催化降解性能,探究其在有机物染料降解中的应用。将复合膜(m4)切成3cm
×
3cm,置于100ml染料中,30℃催化降解。同时,对照反应在条件相同的条件下进行,分别不添加m4和pms做对比。以甲醇为猝灭剂,将降解后的染料于1:1混合,利用紫外分光光度计进行测试,以分析催化降解性能。
[0056]
cofe-pba@pvdf复合膜的自清洁性能测试:
[0057]
本实施例以实施例1所制备的cofe-pba@pvdf复合膜m4为例探究其自清洁性能。以石油醚乳化液为模型,分析了三次循环过滤实验中水通量随时间的变化,以评价膜的防污染性能。将实施例1中制得的膜m4固定在直径为4.5cm的错流过滤装置中在0.05mpa的压力下进行测试。首先用去离子水将膜压实30min。整个污染过程包含三个循环,每个循环操作如下。每个循环包含两部分,第一个部分,通过水过滤60min计算初始水通量;第二部分用石油醚-水乳液代替去离子水过滤60min。第一个循环结束后,用去离子水冲洗污染膜10min。第二循环后,用过硫酸钾溶液(10mmol/l)彻底冲洗污染膜10min,重复第一个循环。
[0058]
通量按以下公式进行计算:
[0059][0060]
其中,j是渗透通量,v(l)的渗透的体积,a是有效膜面积(m2),和δt(h)是分离时间,δp(pa)应用的压力。
[0061]
图6是cofe-pba@pvdf复合膜m4对石油醚/水乳状液的通量图;由图6可见,制备的
cofe-pba@pvdf复合膜m4最初过滤石油醚/水乳液的通量为373.7lm-1
h-1
,经pms溶液清洗后,m4水通量恢复率可达98.1%,乳液通量恢复率可达97.9%。说明cofe-pba@pvdf复合膜m4有良好的自清洁能力及使用寿命,在含油有废水处理领域有广泛的应用前景。
[0062]
上述实例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人是能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献