一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

具有改进的均匀性的半导体处理设备的制作方法

2022-04-09 02:44:10 来源:中国专利 TAG:


1.本文描述的一个或多个实施例总体上涉及半导体处理设备,且更特定地,涉及利用高射频(rf)功率来改进均匀性的半导体处理设备。


背景技术:

2.半导体处理设备通常包括适用于在支撑在工艺腔室的处理区域内的晶片或基板上执行各种沉积、蚀刻、或热处理步骤的工艺腔室。随着在晶片上形成的半导体装置尺寸减小,在沉积、蚀刻、和/或热处理步骤期间对热均匀性的需求大大增加。在处理期间,晶片中温度上的小变化可能影响在晶片上执行的这些通常与温度有关的工艺的晶片内(wiw)均匀性。
3.通常,半导体处理设备包括设置在晶片处理腔室的处理区域中的温度控制晶片支撑件。晶片支撑件包括温度控制支撑板和耦合至支撑板的轴。在处理腔室中的处理期间,将晶片放置在支撑板上。轴通常装设在支撑板的中心处。在支撑板内部,存在由诸如钼(mo)之类的材料制成的传导网,以将rf能量分配至处理腔室的处理区域。传导网通常被焊接到含金属的连接元件,所述连接元件通常连接到rf匹配和rf发生器或接地。
4.随着提供到传导网的rf功率变高,通过连接元件的rf电流也变高。将含金属的连接元件耦合到传导网的每一个焊接接头具有有限的电阻,所述电阻会由于rf电流而产生热。这样,由于焦耳加热,在传导网被焊接到含金属的连接元件的点处温度急剧上升。在传导网和连接元件之间形成的接头处产生的热在接头附近的支撑板中产生较高的温度区域,而导致跨支撑板的支撑表面的非均匀温度。
5.据此,在本领域中需要通过改进将rf功率输送到设置在工艺腔室中的基板支撑件内的传导电极的降低来降低处理腔室内跨支撑板的温度变化。


技术实现要素:

6.本文描述的一个或多个实施例总体上涉及利用高射频(rf)功率来改进均匀性的半导体处理设备。
7.在一个实施例中,半导体处理设备包括:热传导基板支撑件,所述热传导基板支撑件包括主网和次网;热传导轴,所述热传导轴包括传导杆,其中所述传导杆耦合至所述次网;以及连接组件,所述连接组件经配置以将所述次网电耦合至所述主网。
8.在另一实施例中,半导体处理设备包括:热传导基板支撑件,所述热传导基板支撑件包括主网和次网,其中所述次网在所述主网下方间隔开;热传导轴,所述热传导轴包括传导杆,其中所述传导杆通过焊接接头来耦合至所述次网;以及连接组件,所述连接组件包括多个金属柱,其中所述多个金属柱中的每一个经配置以经由连接结(connection junction)将所述次网电耦合到所述主网。
9.在另一实施例中,半导体处理设备包括:热传导基板支撑件,所述热传导基板支撑件包括主网、次网、和加热元件,其中所述次网在所述主网下方间隔开;热传导轴,所述热传
导轴包括传导杆,其中所述传导杆通过焊接接头来耦合至所述次网;连接组件,所述连接组件包括多个金属柱,其中所述多个金属柱中的每一个经配置以经由连接结将所述次网电耦合到所述主网并且被物理耦合至所述次网的每一端;射频(rf)功率源,所述射频(rf)功率源经配置以将rf功率分配至所述次网和所述主网;以及交流电(ac)功率源,所述交流电(ac)功率源经配置以将ac功率分配到所述加热元件。
附图说明
10.为了可以详细地理解本公开内容的上述特征的方式,可通过参考实施例来对本公开内容进行更特定的描述,以上对本发明进行了简要概述,其中一些示出于附图中。然而,应注意,附图仅示出本公开内容的典型实施例,并因此不应被认为是对其范围的限制,因为本公开内容可允许其他等效实施例。
11.图1是根据本公开内容的实施例的处理腔室的侧横截面图;
12.图2a是图1的半导体处理设备的侧横截面图;
13.图2b是在现有技术中沿着基板的表面测量到的温度分布的示意图;
14.图2c是根据本公开内容的实施例的沿着基板的表面测量到的温度分布的示意图;并且
15.图2d是如图1中所示的半导体处理设备的透视图。
具体实施方式
16.在以下描述中,阐述了许多特定细节以提供对本公开内容的实施例的更透彻的理解。然而,对于本领域技术人员而言明显的是,可在没有这些特定细节中的一者或多者的情况下实现本公开内容的一个或多个实施例。在其他情况下,未描述公知的特征,以避免混淆本公开内容的一个或多个实施例。
17.本文所述的一个或多个实施例总体上涉及利用高射频(rf)功率来改进均匀性的半导体处理设备。在所述实施例中,半导体处理设备包括设置在基板支撑元件中的rf供能的主网和rf供能的次网。次rf网以一定距离放置在主rf网下方。连接组件经配置以将次网电耦合至主网。在一些实施例中,连接组件包括多个金属柱。从主网流出的rf电流被分配进入多个连接结。这样,即使在总rf功率/电流较高的情况下,也可防止主网上出现热点,因为rf电流会散布到多个连接结。
18.另外,将单个rf传导杆焊接到次网上。因此,尽管在焊接接头处有热点,但与常规设计相比,在焊接接头处的热点距离基板支撑表面更远。据此,本文所述的实施例有利地对基板温度和膜非均匀性具有较小的影响,并允许使用高得多的rf功率,而不会在正被处理的基板上引起局部热点。
19.图1是根据本公开内容的实施例的处理腔室100的侧横截面图。举例来说,以等离子体增强化学气相沉积(pecvd)系统来描述图1中的处理腔室100的实施例,但可使用任何其他类型的晶片处理腔室,包括其他等离子体沉积、等离子体蚀刻、或类似的等离子体处理腔室,而不会背离本文提供的所公开的基本范围。处理腔室100可包括一起封闭半导体处理设备108和处理区域110的壁102、底部104、和腔室盖106。半导体处理设备108通常是基板支撑元件,可包括使用于晶片处理的基座加热器。可由介电材料形成基座加热器,诸如陶瓷材
料(例如,aln、bn、或al2o3材料)。壁102和底部104可包括电传导和热传导的材料,诸如铝或不锈钢。
20.处理腔室100可进一步包括气体源112。气体源112可经由通过腔室盖106的气体管114耦合到处理腔室100。气体管114可耦合到背板116以准许处理气体通过背板116并且进入在背板116和气体分配喷头122之间形成的气室118。气体分配喷头122可通过悬架(suspension)120保持在与背板116相邻的位置,因此,气体分配喷头122、背板116、和悬架120一起形成有时被称为喷头组件的组件。在操作期间,从气体源112引导进入处理腔室100的工艺气体可填充气室118并通过气体分配喷头122以均匀地进入处理区域110。在替代实施例中,可经由入口和/或喷嘴(未示出)将工艺气体引导进入处理区域110,除了气体分配喷头122之外或代替气体分配喷头122,入口和/或喷嘴接合(attach)到壁102中的一者或多者。
21.处理腔室100进一步包括可以耦合到半导体处理设备108的rf发生器142。在本文描述的实施例中,半导体处理设备108包括热传导基板支撑件130。主网132和次网133嵌入于热传导基板支撑件130内。在一些实施例中,次网133在主网132下方间隔开一距离。基板支撑件130也包括设置在耦合到基板支撑件130的传导轴126的至少一部分内的电传导杆128。基板124(或晶片)可在处理期间被放置在基板支撑件130的基板支撑表面130a上。在一些实施例中,rf发生器142可经由一个或多个传输线144(示出一个)耦合到传导杆128。在至少一个实施例中,rf发生器142可以以约200khz与约81mhz之间的频率(诸如约13.56mhz与约40mhz之间)提供rf电流。由rf发生器142所产生的功率用于将处理区域110中的气体赋能(或“激发”)成为等离子体状态,以例如在等离子体沉积工艺期间在基板124的表面上形成层。
22.连接组件141经配置以将次网133电耦合至主网132。在一些实施例中,连接组件141包括多个金属柱135。多个金属柱135可由镍(ni)、含镍合金、钼(mo)、钨(w)、或其他类似材料制成。流出主网132的rf电流被分配进入多个连接结139。这样,即使在总rf功率/电流较高的情况下,由于rf电流散布到多个连接结139,防止了主网132上出现热点。在一些实施例中,多个金属柱135中的每一个经配置以将次网133电耦合至主网132,且物理耦合至次网133的端部或绕着周边。额外地,在焊接接头137处将传导杆128焊接到次网133上。因此,尽管在焊接接头137处存在热点,然而,与常规设计相比,焊接接头137处的热点距离基板支撑表面130a更远。据此,本文所述的实施例有利地对基板124的温度和膜的非均匀性具有较小的影响,且允许使用更高的rf功率,而不会在基板124上引起局部热点。
23.嵌入基板支撑件130内的是主网132、次网133、和加热元件148。可选地在基板支撑件130内形成的偏压电极146可作用以经由分开的rf连接(未示出)分开地提供rf“偏压”至基板124和处理区域110。加热元件148可包括一个或多个电阻加热元件,所述一个或多个电阻加热元件经配置以在处理期间通过由ac功率源149输送ac功率来向基板124提供热。偏压电极146和加热元件148可由传导材料制成,诸如mo、w、或其他类似的材料。
24.主网132也可作为静电吸附电极,以在处理期间有助于向基板124提供适当的保持力以抵靠基板支撑件130的支撑表面130a。如上所述,主网132可由耐火金属(诸如钼(mo)、钨(w)、或其他类似材料)制成。在一些实施例中,以与基板124所位于其上的支撑表面130a的距离d
t
(见图1)嵌入主网132。d
t
可能非常小,诸如1mm或更小。因此,跨主网132的温度上的
变化极大地影响了设置在支撑表面130a上的基板124的温度上的变化。从主网132传送到支撑表面130a的热由图1中的h箭头来表示。
25.因此,通过分割、分配、和散布由金属柱135中的每一个从次网133到主网132所提供的rf电流量,在金属柱135处产生的对连接结139的附加的温度增加被最小化。与常规连接技术相比,使温度增加最小化导致跨主网132的温度更均匀,这将在下面结合图2b进一步讨论。由于使用了本文所述的连接组件141,跨主网132的温度更加均匀,从而产生了跨支撑表面130a和基板124的更加均匀的温度。另外,在焊接接头137处将传导杆128焊接到次网133上。因此,尽管在焊接接头137处存在热点,但是与常规设计相比,焊接接头137处的热点距离基板支撑表面130a更远。据此,本文所述的实施例有利地对基板124的温度和膜的非均匀性具有较小的影响,且允许使用更高的rf功率,而不会在基板124上引起局部热点
26.图2a是图1的半导体处理设备108的侧横截面图。在所述实施例中,本文所公开的连接元件141也提供了优于常规设计的优点,这是因为金属柱135的直径(由图2a中的dc来表示)小于传导杆128的直径(由图2a中的dr来表示)。由于dc的直径较小,金属柱135中的每一个具有较小的横截面面积,且因此在连接结139中的每一者处具有与传导杆128的较大横截面面积和焊接接头137处的接触面积相比较小的接触面积,但总体上,多个金属柱135的横截面面积等于或大于传导杆128的横截面面积。在一个实施例中,只要多个金属柱135的横截面面积的总和大于传导杆128的横截面面积,则金属柱135的横截面面积等于或大于传导杆128的横截面面积。如下面进一步描述,相同的rf电流被分成多个金属柱135。这样,穿过金属柱135中的每一个的rf电流仅是总rf电流的一部分,在金属柱135中的每一个中及连接结139处产生更少的热。由于金属柱135中的每一个的热传导率与传导杆128的热传导率相同(因为它们由相同材料制成),由于多个金属柱135,针对金属柱135中的每一个产生的热较少,并且跨金属柱135更均匀地散布。所述布置在基板支撑件130内提供更均匀的热,这有助于跨支撑表面130a和基板124产生更均匀的温度分布。
27.为了说明使用本文中所公开的传导组件配置的效果,根据本公开内容的一个或多个实施例,提供图2b作为现有技术中跨现有技术基板支撑表面206a和现有技术基板支撑件206的基板202形成的温度分布的示意图,并且提供图2c作为跨支撑表面130a和基板124形成的温度分布的示意图。如图2b中所示,rf电流前进穿过现有技术的传导杆208。所述rf电流由值i1表示。现有技术的传导杆208设置在现有技术的传导轴210内且在单个现有技术的结212处直接连接至现有技术的网204。因此,电流完全从现有技术的传导杆208流向单个现有技术的结212。传导杆具有有限的电阻抗,由于穿过现有技术的传导杆208的rf电流的输送而产生了热。因此,由于能够传导rf功率的降低的表面面积,提供给现有技术的连接结212的热有急剧的增加。随着热向上流动穿过现有技术的传导基板支撑件206至基板202,如h箭头所示,在现有技术的结212上方的基板202的位置处的温度在中心区域中激增,如图表200所示,从而导致非均匀的膜层。
28.相反地,如图2c中所示,本文所述的实施例提供了将穿过传导杆128产生的电流i1散布进入金属柱135中的每一个的优点。穿过金属柱135中的每一个的电流由i2表示。在一些实施例中,穿过金属柱135中的每一个的电流i2可为相等。因此,在至少一个实施例中,金属柱135可包括两个元件(在此被示出)。然而,金属柱135可包括任何数量的多个元件,包括三个或更多个。穿过金属柱135的电流i2可以比穿过传导杆128的电流i1要小至少两倍。据
此,电流i2以较低强度并在跨主网132的多个分布点处流入连接结139,有助于散布跨基板124产生的热量,从而在任一个点处产生少得多的热增加,如图表214所示。此作用以改进膜层中的均匀性。在图2d中最佳地示出了金属柱135跨基板支撑件130的主网132的散布,提供了半导体处理设备108的一个实施例的透视图。如所示,金属柱135中的每一个可相对彼此远离而散布,将电流和产生的热广泛分布跨支撑表面130a,从而得到跨基板124的均匀热散布。
29.尽管前述内容针对本发明的实现,但在不脱离本发明的基本范围的情况下,可设计本发明的其他和进一步的实现,且本发明的范围由所附权利要求来确定。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献