一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

神经网络模型部署方法及装置、电子设备和存储介质与流程

2022-04-16 19:01:30 来源:中国专利 TAG:


1.本公开涉及计算机技术领域,尤其涉及一种神经网络模型部署方法及装置、电子设备和存储介质。


背景技术:

2.随着人工智能技术的不断发展,深度学习等神经网络的应用也越来越广泛。神经网络模型的部署是让学习算法在生产中实际发挥作用的重要工作,模型的实际部署方案关系着模型是如何被程序所使用的,它在整个神经网络学习应用场景中起着十分关键的作用。然而,随着近年来边缘推理硬件的百花齐放,各硬件所支持的基础算子集合各异,给神经网络模型的部署带来了各种挑战。


技术实现要素:

3.本公开提出了一种神经网络模型部署的技术方案。
4.根据本公开的一方面,提供了一种神经网络模型部署方法,应用于电子设备,所述方法包括:获取待部署的神经网络模型;对所述神经网络模型进行编译,得到编译后的离线模型,所述离线模型包括多个离线子模型,每个所述离线子模型部署到对应的硬件后端,各种硬件后端分别对应于将神经网络模型部署至硬件设备的不同工具链,每个硬件设备对应于至少一个硬件后端;将所述多个离线子模型下发至对应的硬件设备。
5.在一种可能的实现方式中,所述对所述神经网络模型进行编译,得到编译后的离线模型,包括:对所述神经网络模型进行结构转换,得到适应于模型变换的内部模型结构;根据待部署的各个所述硬件后端,对所述内部模型结构进行拆分,得到多个子模型以及所述多个子模型间的串联关系,其中,每一子模型对应一个目标硬件后端;针对任一子模型,对所述子模型进行与所述目标硬件后端相关的模型变换操作,得到部署到所述目标硬件后端的离线子模型;根据多个所述离线子模型以及所述串联关系,确定所述离线模型。
6.在一种可能的实现方式中,所述目标硬件后端为所述子模型可部署的硬件后端中预设优先级最高的硬件后端。
7.在一种可能的实现方式中,所述根据待部署的各个所述硬件后端,对所述内部模型结构进行拆分之前,还包括:对所述内部模型结构进行与硬件后端相关的模型变换操作和模型优化操作。
8.在一种可能的实现方式中,对所述内部模型结构进行与硬件后端相关的模型变换操作,包括:对所述内部模型结构进行与预设优先级最高的硬件后端相关的模型变换操作。
9.在一种可能的实现方式中,对所述内部模型结构进行与硬件后端相关的模型变换操作和模型优化操作之前,还包括:对所述内部模型结构进行与硬件后端无关的模型优化操作。
10.在一种可能的实现方式中,所述对所述子模型进行与所述目标硬件后端相关的模型变换操作,得到部署到所述目标硬件后端的离线子模型,包括:对所述子模型进行与所述
目标硬件后端相关的模型变换操作,得到第一状态的子模型;对所述第一状态的子模型进行格式转换,得到第二状态的子模型,其中,所述第二状态的子模型适应于所述目标硬件后端的输入格式;将所述第二状态的子模型部署到所述目标硬件后端,得到所述离线子模型。
11.在一种可能的实现方式中,将所述多个离线子模型下发对应的硬件设备,包括:通过模型解释器读取所述离线模型的多个所述离线子模型以及多个所述离线子模型间的所述串联关系;将各个所述离线子模型分别下发到对应的硬件设,其中,所述模型解释器根据多个所述离线子模型间的所述串联关系,在所述硬件设备运行时串联多个所述离线子模型。
12.在一种可能的实现方式中,所述硬件后端包括:使用硬件厂商推理库的硬件后端、使用硬件厂商算子库的硬件后端或使用非硬件厂商提供的算子的硬件后端。
13.根据本公开的一方面,提供了一种神经网络模型部署装置,应用于电子设备,包括:获取模块,用于获取待部署的神经网络模型;编译模块,用于对所述神经网络模型进行编译,得到编译后的离线模型,所述离线模型包括多个离线子模型,每个所述离线子模型部署到对应的硬件后端,各种硬件后端分别对应于将神经网络模型部署至硬件设备的不同工具链,每个硬件设备对应于至少一个硬件后端;运行模块,用于将所述多个离线子模型下发至对应的硬件设备。
14.在一种可能的实现方式中,所述编译模块包括:结构转换模块,用于对所述神经网络模型进行结构转换,得到适应于模型变换的内部模型结构;拆分模块,用于根据待部署的各个所述硬件后端,对所述内部模型结构进行拆分,得到多个子模型以及所述多个子模型间的串联关系,其中,每一子模型对应一个目标硬件后端;离线子模型获取模块,用于针对任一子模型,对所述子模型进行与所述目标硬件后端相关的模型变换操作,得到部署到所述目标硬件后端的离线子模型;离线模型确定模块,用于根据多个所述离线子模型以及所述串联关系,确定所述离线模型。
15.在一种可能的实现方式中,所述目标硬件后端为所述子模型可部署的硬件后端中预设优先级最高的硬件后端。
16.在一种可能的实现方式中,所述编译模块还包括第一模块,用于:所述根据待部署的各个所述硬件后端,对所述内部模型结构进行拆分之前,对所述内部模型结构进行与硬件后端相关的模型变换操作和模型优化操作。
17.在一种可能的实现方式中,对所述内部模型结构进行与硬件后端相关的模型变换操作,包括:对所述内部模型结构进行与预设优先级最高的硬件后端相关的模型变换操作。
18.在一种可能的实现方式中,所述编译模块还包括第二模块,用于:对所述内部模型结构进行与硬件后端相关的模型变换操作和模型优化操作之前,对所述内部模型结构进行与硬件后端无关的模型优化操作。
19.在一种可能的实现方式中,所述离线子模型获取模型,用于:对所述子模型进行与所述目标硬件后端相关的模型变换操作,得到第一状态的子模型;对所述第一状态的子模型进行格式转换,得到第二状态的子模型,其中,所述第二状态的子模型适应于所述目标硬件后端的输入格式;将所述第二状态的子模型部署到所述目标硬件后端,得到所述离线子模型。
20.在一种可能的实现方式中,所述运行模块,用于:通过模型解释器读取所述离线模
型的多个所述离线子模型以及多个所述离线子模型间的所述串联关系;将各个所述离线子模型分别下发到对应的硬件设,其中,所述模型解释器根据多个所述离线子模型间的所述串联关系,在所述硬件设备运行时串联多个所述离线子模型。
21.在一种可能的实现方式中,所述硬件后端包括:使用硬件厂商推理库的硬件后端、使用硬件厂商算子库的硬件后端或使用非硬件厂商提供的算子的硬件后端。
22.根据本公开的一方面,提供了一种电子设备,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为调用所述存储器存储的指令,以执行上述方法。
23.根据本公开的一方面,提供了一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述方法。
24.在本公开实施例中,能够对待部署的神经网络模型进行编译,得到包括多个离线子模型的离线模型,每个离线子模型可部署到对应的硬件后端;再将多个离线子模型下发至对应的硬件设备,每个硬件设备可对应于至少一个硬件后端。可以充分发挥针对硬件设备的各种硬件后端的优势,提高神经网络模型的部署效率和灵活度。
25.应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,而非限制本公开。根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
26.此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本公开的实施例,并与说明书一起用于说明本公开的技术方案。
27.图1示出根据本公开实施例的神经网络模型部署方法的流程图。
28.图2示出根据本公开实施例的神经网络模型部署方法的示意图。
29.图3示出根据本公开实施例的神经网络模型部署方法中编译阶段的流程图。
30.图4示出根据本公开实施例的神经网络模型部署装置的框图。
31.图5示出根据本公开实施例的一种电子设备的框图。
32.图6示出根据本公开实施例的另一种电子设备的框图。
具体实施方式
33.以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
34.在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
35.本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,a和/或b,可以表示:单独存在a,同时存在a和b,单独存在b这三种情况。另外,本文中术语“至少一种”表示多种中的任意一种或多种中的至少两种的任意组合,例如,包括a、b、c中的至少一种,可以表示包括从a、b和c构成的集合中选择的任意一个或多个元素。
36.另外,为了更好地说明本公开,在下文的具体实施方式中给出了众多的具体细节。
本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
37.相关技术中,为了支持神经网络的应用,各硬件厂商分别生产了各种可以运行神经网络模型的边缘推理硬件,例如包括中央处理器(central processing unit,cpu)、图形处理器(graphics processing unit,gpu)、张量处理器(tensor processing unit,tpu)、机器学习处理器(machine learning unit,mlu)或arm处理器(advanced risc machine,arm)等相关推理硬件。
38.然而,不同厂商的推理硬件所对应的规范也不同(例如,各推理硬件所支持的基础算子集合各异),给神经网络模型的部署带来了各种挑战:
39.1、在上层业务开发的过程中,由于各推理硬件之间的区别比较大,各硬件厂商提供的接口设计各异,无法在一个框架内高效、统一地接入多种推理硬件,给上层业务的开发带来了不便。
40.2、由于各个推理硬件的工具链可接收的神经网络模型的定义不同,可能需要根据硬件厂商的规范(例如包括推理库)要求,对模型进行手工修改。一个训练好的神经网络模型在不进行手工修改的情况下,无法部署到多种推理硬件,也无法做到一次训练的多硬件部署。
41.3、推理硬件厂商提供的部署软件可能不支持自主设计的神经网络模型的部署,例如,神经网络模型中可能存在难以在特定推理硬件上部署的片段(例如,深度神经网络模型包括的部分层或部分算子)。在这种情况下,神经网络模型可能会部署失败,或者在部署的过程中,需要主机、推理设备的异构计算来完成整个模型的部署,过程比较繁琐。
42.有鉴于此,本公开提出一种神经网络模型部署方法,可以对待部署的神经网络模型进行编译,得到包括多个离线子模型的离线模型,每个离线子模型可部署到对应的硬件后端;再将多个离线子模型下发至对应的硬件设备,每个硬件设备可对应于至少一个硬件后端。因此,该方法可以充分发挥针对硬件设备的各种硬件后端的优势,提高神经网络模型的部署效率和灵活度。
43.图1示出根据本公开实施例的神经网络模型部署方法的流程图,如图1所示,该方法应用于电子设备,包括:
44.在步骤s1中,获取待部署的神经网络模型;
45.在步骤s2中,对所述神经网络模型进行编译,得到编译后的离线模型,所述离线模型包括多个离线子模型,每个所述离线子模型部署到对应的硬件后端,各种硬件后端分别对应于将神经网络模型部署至硬件设备的不同工具链,每个硬件设备对应于至少一个硬件后端;
46.在步骤s3中,将所述多个离线子模型下发至对应的硬件设备。
47.在一种可能的实现方式中,本公开实施例提供的神经网络模型部署方法可以由终端设备或服务器等电子设备执行,终端设备可以为用户设备(user equipment,ue)、移动设备、用户终端、终端、蜂窝电话、无绳电话、个人数字助理(personal digital assistant,pda)、手持设备、计算设备、车载设备、可穿戴设备等,所述方法可以通过处理器调用存储器中存储的计算机可读指令的方式来实现。或者,可通过服务器执行所述方法。
48.在步骤s1中,获取的待部署的神经网络模型为训练好的神经网络模型,即通过预
设的训练样本、损失函数对初始状态的神经网络模型训练,得到的满足目标性能要求的神经网络模型。
49.在一种可能的实现方式中,所述神经网络模型包括特征提取神经网络模型、分类神经网络模型以及目标检测神经网络模型中的至少一种。
50.其中,所述神经网络模型可以为实现任意功能的神经网络模型,例如可以包括实现输入数据特征信息提取的特征提取神经网络模型、实现对象检测的目标检测神经网络模型、实现目标分割的神经网络模型、实现目标分类的神经网络模型、自然语言处理的神经网络模型中的至少一种。上述仅为示例性说明,本公开对此不作具体限制。
51.在获得了待部署的神经网络模型之后,可将该神经网络模型部署到对应的硬件设备。在实际的应用中,根据硬件设备的性能,可以将神经网络模型部署到一个或多个硬件设备,本公开对硬件设备的数量不作具体限制。
52.假设在需要将神经网络模型部署到一个硬件设备的情况下,可先对该神经网络模型进行编译处理,得到一个离线模型,再在硬件设备上运行该离线模型,实现神经网络模型在硬件设备的部署。其中,硬件设备可以是任意硬件厂商生产的推理硬件,本公开对硬件设备的种类不作限制。
53.举例来说,假设该神经网络模型为实现目标识别的神经网络模型a,可包括两个卷积层a1和a2、池化层a3和全连接层a4。可以根据步骤s2~s3将该神经网络模型a部署至硬件设备h(例如gpu)。
54.在步骤s2中,可将该神经网络模型a输入编译器,对神经网络模型a进行编译处理,将输入的神经网络模型a部署到多个硬件后端,得到对应多个硬件后端的离线子模型。
55.其中,多个硬件后端,可以分别对应于将神经网络模型a部署至硬件设备h的多种工具链。假设硬件设备h为支持计算统一设备架构(compute unified device architecture,cuda)的gpu,针对该硬件设备的工具链可包括tensorrt工具链、cudnn(cuda deep neural network library,cudnn)工具链等。本公开对工具链的种类不做限制。
56.例如,可将神经网络模型a包括的卷积层a1和a2部署到硬件后端1,得到离线子模型c1;可将神经网络模型a包括的池化层a3部署到硬件后端2,得到离线子模型c2;可将神经网络模型a包括的全连接层a4部署到硬件后端3,得到离线子模型c3。
57.然后,按照卷积层a1和a2、池化层a3和全连接层a4之间的数据输入输出的依赖关系(即串联关系),将部署到硬件后端1~3的离线子模型c1~c3串联处理,得到编译后的离线模型。
58.在步骤s3中,可将离线子模型c1~c3下发至硬件设备h,可在硬件设备h中运行由离线子模型c1~c3串联成的离线模型,也即运行编译后的离线模型,将包括多个离线子模型c1~c3的离线模型部署到硬件设备h。
59.通过这种方法,在将神经网络模型部署到一个硬件设备的情况下,实际上是将神经网络模型部署到针对该硬件的所有后端,可以充分发挥针对硬件设备的各种硬件后端的优势,同时利用各硬件后端的优点。
60.假设在需要将神经网络模型部署到多个硬件设备的情况下,可先对该神经网络模型进行编译处理,得到一个离线模型,再在多个硬件设备上运行该离线模型,实现神经网络模型在多个硬件设备的部署。其中,硬件设备可以是任意硬件厂商生产的推理硬件,本公开
对硬件设备的种类不作限制。
61.举例来说,假设该神经网络模型为实现目标识别的神经网络模型a,可包括两个卷积层a1和a2、池化层a3和全连接层a4。可以根据步骤s2~s3将该神经网络模型a部署至硬件设备h1(例如gpu)和硬件设备h2(例如cpu)。
62.在步骤s2中,可将该神经网络模型a输入编译器,对神经网络模型a进行编译处理,将输入的神经网络模型a部署到多个硬件后端,得到对应多个硬件后端的离线子模型。其中,多个硬件后端,可以分别对应于将神经网络模型a部署至硬件设备a和硬件设备b的多种工具链。
63.例如,可将神经网络模型a包括的卷积层a1和a2,部署到对应硬件设备h1的硬件后端b1,得到离线子模型c1;可将神经网络模型a包括的池化层a3,部署到对应硬件设备h1的硬件后端b2,得到离线子模型c2;可将神经网络模型a包括的全连接层a4,部署到对应硬件设备h2的硬件后端b3,得到离线子模型c3。
64.然后,按照卷积层a1和a2、池化层a3和全连接层a4之间的数据输入输出的依赖关系(即串联关系),将部署到硬件后端b1~b3的离线子模型c1~c3串联处理,得到编译后的离线模型。
65.在步骤s3中,可将离线子模型c1~c2下发至对应的硬件设备h1,将离线子模型c3下发至对应的硬件设备h2,在对应硬件设备h1和h2中运行编译后的离线模型,将包括多个离线子模型c1~c3的离线模型部署到对应的硬件设备h1和h2,例如,可将离线模型包括的离线子模型c1和c2部署到硬件设备h1,将离线模型c3部署到硬件设备h2。
66.通过这种方法,在神经网络模型比较大,在现有的某一硬件设备的性能不满足对该神经网络模型部署条件的情况下,可以将神经网络模型部署到多个硬件设备,充分利用各个硬件设备的优点。
67.在一种可能的实现方式中,在上述神经网络模型部署的过程中,每个硬件设备可对应于至少一个硬件后端,硬件后端包括:使用硬件厂商推理库的硬件后端、使用硬件厂商算子库的硬件后端或使用非硬件厂商提供的算子的硬件后端。
68.其中,使用硬件厂商推理库的硬件后端,输入待部署的神经网络模型(或子模型)至该后端进行部署处理,部署后得到一个可直接在硬件上运行的离线模型(或离线子模型)。可见,使用硬件厂商推理库的硬件后端的优点是对接速度快,部署后模型的性能、精度可由硬件厂商提供保障;然而,缺点是灵活性差,且自主可控性低,推理库对自有模型(自主研发的模型)的支持不一定好。
69.其中,使用硬件厂商算子库的硬件后端,由算子组合完成整个离线模型的计算。比使用推理库的硬件后端更为灵活,单个算子性能也有足够的保证,开发量比较适中。
70.其中,使用非硬件厂商提供的算子的硬件后端,例如包括使用自研算子的硬件后端,自主可控性比较高,对自有模型的针对性比较强,但是所需投入的时间和人力比较大。其中,自研算子可以由预设的编程语言表示。
71.可见,不同的硬件后端有不同的优点,待部署的硬件设备可同时利用各硬件后端的优势,在神经网络模型部署的过程中,充分利用各硬件后端的性能,提高模型部署效率、灵活度。
72.因此,根据本公开的实施例,能够对待部署的神经网络模型进行编译,得到包括多
个离线子模型的离线模型,每个离线子模型可部署到对应的硬件后端;再将多个离线子模型下发至对应的硬件设备,每个硬件设备可对应于至少一个硬件后端。可以充分发挥针对硬件设备的各种硬件后端的优势,提高神经网络模型的部署效率和灵活度。
73.通过上述部署方法,可以将神经网络模型部署到一个或多个硬件设备,在硬件设备中部署好神经网络模型后,可获取输入数据;再利用部署到硬件设备的所述神经网络模型对所述输入数据进行处理,得到预测结果。其中,输入数据可以根据神经网络的功能确定,例如输入数据可以包括语音、文字、图像、视频等中的至少一种。
74.例如,本公开实施例中的神经网络模型可以为人脸识别神经网络模型,通过步骤s1~s3,在硬件设备上部署好该人脸识别神经网络模型,在应用过程中,可以将图片形式的输入数据传入硬件设备,执行推理后,会返回预测结果,也即输入图像数据中包括目标人脸的部分。
75.通过这种方式,运转部署好的神经网络模型,可以高效快速地获取神经网络模型的推理结果。
76.下面对本公开实施例的神经网络模型部署方法进行展开说明。
77.图2示出根据本公开实施例的神经网络模型部署方法的示意图,如图2所示,本公开方法可通过编译、运行两个阶段实现神经网络模型的部署。
78.如图2所示,在编译阶段,可将在步骤s1中获取的待部署的神经网络模型(原始模型),输入编译器,在步骤s2中通过编译器对获取的神经网络模型进行编译处理,得到编译后的离线模型。
79.如图2所示,编译器包含模型表示结构、硬件无关模型变换、模型拆分、模型格式转换等模块,具体介绍如下:
80.模型表示结构模块,用于对输入编译器的神经网络模型的模型结构进行建模的相关功能,以及算子定义的集合,用于获取适应于模型变换的内部模型结构。其中,神经网络模型可以由一个个计算单元组成,可以将这些计算单元定义为算子(operator)。在神经网络模型中,算子可对应各层中的计算逻辑,例如:卷积层是一个算子、全连接层中的权值求和过程,也可以是一个算子。本公开对算子的具体形式不作限制。
81.硬件无关模型变换模块,包括了与硬件后端无关的模型优化操作,与硬件后端无关的模型变换操作集合,可以对神经网络模型进行优化。
82.模型拆分模块,用于对神经网络模型进行拆分处理,生成多个子模型,每个子模型可以被部署到一个硬件后端。
83.模型格式转换模块,将模型表示结构转换成硬件后端的输入格式,以便对拆分后的子模型进行部署。
84.如图2所示,各硬件后端可以通过软件接口的方式与编译器连接,例如,硬件a后端0、硬件a后端1可通过各自的软件接口与编译器连接。其中,硬件a后端0、硬件a后端1为对应同一硬件设备a的不同硬件后端。本公开对接入的硬件后端的个数和类型不作限制。
85.每个硬件后端可包含后端相关模型变换、后端模型部署模块。例如,硬件a后端0包括后端0相关模型变换、后端0模型部署模块;硬件a后端1包括后端1相关模型变换、后端1模型部署模块。
86.其中,后端相关模型变换模块用于对子模型进行与硬件后端相关的模型变换操作
和模型优化操作。例如,后端0相关模型变换模块可用于对该硬件后端所匹配的子模型进行与硬件a后端0相关的模型变换操作和模型优化操作;后端1相关模型变换模块可用于对该硬件后端所匹配的子模型进行与硬件a后端1相关的模型变换操作和模型优化操作。
87.其中,后端模型部署模块用于接受变换后的子模型,将其转换成对应的离线子模型。例如,后端0模型部署模块可接受与硬件a后端0相关转换后的子模型,将该子模型转换成对应的离线子模型;后端1模型部署模块可接受与硬件a后端1相关转换后的子模型,将该子模型转换成对应的离线子模型。
88.如图2所示,在运行阶段,可在步骤s3中,将步骤s2得到的多个离线子模型下发至对应的硬件设备,以使多个离线子模型分别部署到对应的硬件设备。其中,运行时可利用如图2所示的模型解释器,将离线模型包括的多个离线子模型匹配至对应的硬件设备。然后在硬件设备中分别运行各自接收的离线子模型,完成神经网络模型的部署。
89.例如,可利用如图2所示的模型解释器,将在编译阶段通过硬件a后端0、硬件a后端1得到的离线子模型,匹配至硬件a,并在硬件a中运行这两个离线子模型,完成对硬件a的模型部署。应当理解,针对硬件b,可利用模型解释器,匹配在编译阶段硬件b后端得到的离线子模型,此处不再赘叙。
90.其中,如图2所示,待部署的硬件设备可包括多个硬件设备,例如硬件a和硬件b,每个硬件设备可包括设备管理、内存管理等,以及算子核函数集合。各硬件设备可内置操作系统(例如包括unix操作系统、linux操作系统等)进行设备管理和内存管理等;并且,各硬件设备还可以内置算子核函数集合,例如包括算子核函数集合的软件开发工具包(software development kit,sdk),部署在硬件设备上的神经网络模型可调用sdk中的算子核函数。本公开对硬件设备的数量,以及各硬件设备的操作系统种类以及算子核函数集合种类不作限制。
91.因此,基于图2示出的神经网络模型部署框架,在编译阶段,可通过编辑器对待部署的神经网络模型(原始模型)进行编译处理,得到包括多个离线子模型的离线模型;在运行阶段,将多个离线子模型下发至对应的硬件设备,可在对应的硬件设备中运行由多个离线子模型构成的离线模型,完成神经网络模型的部署。
92.下面对本公开方法通过编译、运行阶段实现神经网络模型部署的过程进行展开介绍。
93.图3示出根据本公开实施例的神经网络模型部署方法中编译阶段的流程图,如图3所示,步骤s2可包括:
94.在步骤s21中,对所述神经网络模型进行结构转换,得到适应于模型变换的内部模型结构;
95.在步骤s22中,根据待部署的各个所述硬件后端,对所述内部模型结构进行拆分,得到多个子模型以及所述多个子模型间的串联关系,其中,每一子模型对应一个目标硬件后端;
96.在步骤s23中,针对任一子模型,对所述子模型进行与所述目标硬件后端相关的模型变换操作,得到部署到所述目标硬件后端的离线子模型;
97.在步骤s24中,根据多个所述离线子模型以及所述串联关系,确定所述离线模型。
98.举例来说,在步骤s21中,可根据编译器的模型表示结构模块,对输入的神经网络
模型(原始模型)进行结构转换,得到适用于该编译器的模型变换的内部模型结构,也即适应于模型变换状态的神经网络模型。
99.例如,假设输入的神经网络模型包括描述神经网络的网络结构文件,以及存储网络权重的参数信息文件。可利用编译器中的模型表示结构模块,根据输入的网络结构文件和参数信息文件,对输入的神经网络模型进行重构处理,得到适应于模型变换的内部模型结构。其中,在对神经网络模型进行重构过程中,将用于重构的各算子进行集合,得到算子定义集合。该算子定义集合,可包括了用于构建内部模型结构的各算子。
100.如果在步骤s21得到的适应于模型变换的内部模型结构比较简单,相应地,用于构建该内部模型结构的各算子也比较简单,对各类硬件后端均可支持使用。在这种情况下,可直接在步骤s22中,根据待部署的各个所述硬件后端,对所述内部模型结构进行拆分,得到多个子模型以及所述多个子模型间的串联关系;
101.如果在步骤s21得到的适应于模型变换的内部模型结构比较复杂,相应地,用于构建该内部模型结构的各算子中,存在比较复杂的算子,有一些算子是针对特定硬件后端才可支持使用的算子,无法支持大部分的硬件后端。可以在步骤s22之前,对所述内部模型结构进行与硬件后端无关的模型优化操作,和/或,与硬件后端相关的模型变换操作和模型优化操作,使其包括的每一个算子对各类硬件后端均可支持使用。再在步骤s22中,根据待部署的各个所述硬件后端,对各种操作处理后的内部模型结构进行拆分,得到多个子模型以及所述多个子模型间的串联关系。
102.在一种可能的实现方式中,对所述内部模型结构进行与硬件后端无关的模型优化操作。
103.举例来说,在步骤s21得到的适应于模型变换的内部模型结构之后,可以先对适应于模型变换的内部模型结构进行与硬件后端无关的模型优化操作,例如算子等价替换、算子合并等与硬件后端无关的模型优化操作,得到优化后的内部模型结构,也即与硬件后端无关的神经网络模型。
104.例如,假设构成内部模型结构的多个算子中包括批归一化算子(batch normalization,bn),批归一化算子用于对神经网络模型的网络层的输出进行标准化处理,使各层的输出更加稳定。在这种情况下,对内部模型结构进行与硬件后端无关的模型变换操作,可以将批归一化算子替换成减法和除法操作,得到与硬件后端无关的内部模型结构。
105.其中,批归一化算子的等价替换,可以表示为:batchnorm(x,mean,std_var)=(x-mean)/std_var,batchnorm代表用于替换的算子,可输出归一化后的批数据,x代表各层的待处理数据,mean代表均值数据,std_var代表归一化参数。
106.可见,通过对内部结构进行与硬件后端无关的模型优化操作,可以将内部结构中针对特定硬件后端才可支持使用的算子,等价替换为支持大部分硬件后端的算子,得到与硬件后端无关的内部模型结构。
107.进一步,为了提高后续步骤的处理效率,在进行与硬件后端无关的模型优化操作的过程中,还可以对内部模型结构进行算子合并,得到结构更加简单的与硬件后端无关的内部模型结构。
108.例如,假设构成内部模型结构的多个算子中包括卷积算子,以及接在卷积算子后边的乘法算子,可对内部模型结构进行与硬件后端无关的模型变换操作,将乘法算子合并
入卷积算子conv,得到与硬件后端无关的内部模型结构。
109.其中,卷积算子与乘法算子的合并过程可表示为:conv(x,filter)*scale=conv(x,filter*scale),x代表待处理数据,filter代表卷积核,scale代表相乘系数。其中,当filter和scale都是常数时可以在编译时提前算出来。
110.通过这种方式,得到的与硬件后端无关的内部模型结构(即与硬件后端无关的神经网络模型),是可以支持大部分硬件后端的神经网络模型,有利于提高神经网络模型的部署效率,降低部署难度。
111.在一种可能的实现方式中,对所述内部模型结构进行与硬件后端无关的模型优化操作之后,对所述内部模型结构进行与硬件后端相关的模型变换操作和模型优化操作。
112.举例来说,在得到与硬件后端无关的内部模型结构后,可根据待部署的硬件后端,对与硬件后端无关的内部模型结构进行与硬件后端相关的模型变换操作和模型优化操作,可包括将待部署的硬件后端不支持的算子尽可能替换为支持的算子、或根据硬件后端特性进行算子的等价替换等与硬件后端相关的模型变换操作,得到与硬件后端相关的内部模型结构。
113.例如,假设待部署的硬件后端支持网络模型级别的算子,不支持网络层级别的算子,而内部模型结构(例如与硬件后端无关的内部模型结构)中包括的是网络层级别的算子,可根据待部署的硬件后端,对内部模型结构进行与硬件后端相关的模型变换操作,将网络层级别的算子替换为网络模型级别的算子,得到与硬件后端相关的模型变换操作后的内部模型结构。
114.或者,假设内部模型结构包括了多个小规模的矩阵算子,可支持大部分的硬件后端,而待部署的硬件后端性能比较好,支持各种大规模或小规模的矩阵运算算子,可对内部模型结构进行与硬件后端相关的模型优化操作,将内部模型结构的多个小规模的矩阵算子,等价合并成一个支持待部署硬件后端的大规模矩阵算子,得到与硬件后端相关的模型优化操作后的内部模型结构。
115.应当理解,本公开对与硬件后端相关的模型变换操作和模型优化操作包括的具体的算子操作内容不作限制。
116.通过这种方式,可以得到支持各硬件后端的内部模型结构,是可以支持所有硬件后端的神经网络模型,有利于充分利用各硬件后端的特性,提高神经网络模型的部署效率,降低部署难度。
117.在一种可能的实现方式中,对所述内部模型结构进行与硬件后端相关的模型变换操作,包括:对所述内部模型结构进行与预设优先级最高的硬件后端相关的模型变换操作。
118.举例来说,待部署内部结构模型的硬件后端可包括使用硬件厂商推理库的硬件后端、使用硬件厂商算子库的硬件后端或使用非硬件厂商提供的算子的硬件后端。可以根据待部署的硬件后端,预设各硬件后端的优先级,例如,可以设置使用硬件厂商推理库的硬件后端的优先级高于使用硬件厂商算子库的硬件后端,使用硬件厂商算子库的硬件后端的优先级高于使用非硬件厂商提供的硬件后端。
119.可根据硬件后端预设的优先级的级别,对内部模型结构进行与预设优先级最高的硬件后端相关的模型变换操作,例如,在内部模型结构包括的算子,既可以使用硬件厂商推理库或算子库的硬件后端,也可以使用非硬件厂商提供的硬件后端的情况下,可以根据预
设优先级最高的硬件后端,即使用硬件厂商推理库的硬件后端,对内部模型结构进行与该硬件后端相关的模型变换操作。
120.其中,如果变换后的内部模型结构中还存在不支持使用硬件厂商推理库的硬件后端的部分,可以再继续按照剩余的硬件后端的优先级顺序,也即根据使用硬件厂商算子库的硬件后端和使用非硬件厂商提供的硬件后端的优先级顺序,对内部模型结构中不支持使用硬件厂商推理库的硬件后端的部分,进行与使用硬件厂商算子库的硬件后端相关的模型变换操作,以及与使用非硬件厂商提供的硬件后端相关的模型变换操作。
121.通过这种方式,能够根据硬件后端的优先级,对内部模型结构进行与硬件后端相关的模型变换操作,不仅可以得到支持各硬件后端的内部模型结构,而且提高了对内部模型结构进行与硬件后端相关的模型变换操作的效率。
122.在得到了可以支持各硬件后端相关的内部模型结构,可在步骤s22中,根据待部署的各个硬件后端的支持情况,对内部模型结构进行拆分,得到多个子模型以及所述多个子模型间的串联关系。其中,每一子模型对应一个目标硬件后端,每个子模型可在后续步骤中被部署到目标硬件后端,各目标硬件后端可以通过软件接口形式和编译器连接。
123.举例来说,假设待部署的各个硬件后端包括硬件后端tensorrt和硬件后端cudnn,其中,硬件后端tensorrt和硬件后端cudnn虽然可以匹配相同的硬件设备(支持cuda架构的gpu),但是硬件后端tensorrt和硬件后端cudnn包含的算子库是不同的。使用硬件后端tensorrt对内部模型结构部署的效率会比较快,但是该后端对内部模型结构中的部分模型片段是不支持,对于这部分模型片段,可以使用硬件后端cudnn进行部署。
124.因此,可根据待部署的各个硬件后端的支持情况,例如包括硬件后端性能、算子库种类等,对内部模型结构进行拆分,使拆分所得的多个子模型可以更适合对应的目标硬件后端。
125.例如,假设内部模型结构,可包括两个卷积层a1和a2、池化层a3和全连接层a4。在编译器可以通过软件接口连接的各目标硬件后端中,硬件后端0包括了大量的卷积运算算子,对卷积运算比较支持,而硬件后端1和硬件后端2分别对池化网络和全连接网络比较支持。在这种情况下,可以将内部模型结构拆分成三个子模型,子模型1包括卷积层a1和a2,子模型2包括池化层a3、子模型3包括连接层a4。并且,子模型1的数据输出接口可以与子模型2的数据输入接口相连接,子模型2的数据输出接口可以与子模型3的数据输入接口相连接,根据子模型1~3之间数据输入输出的依赖关系,可以确定子模型间的串联关系。该串联关系有利于后续将拆分所得的各子模型进行整合处理,串联成一个同拆分前功能相同的神经网络模型。
126.其中,子模型1可对应硬件后端0,子模型2可对应硬件后端2,子模型3可对的硬件后端3。
127.通过对内部模型结构的拆分,有助于利用各个硬件后端的优势。
128.应当理解,上述按照网络层进行拆分的方式仅作示意,还可以将神经网络模型中任意网络层拆分成多个子模型,例如,全连接层a4可以拆分成一个代表矩阵乘法的子模型,以及一个代表矩阵加法的子模型,本公开对具体的拆分方式不作限制,可根据待部署的各个硬件后端的支持情况确定。
129.其中,硬件后端可包括:使用硬件厂商的推理库进行模型级接入的后端、使用硬件
厂商的算子库进行算子级接入的后端或使用非硬件厂商提供的算子进行算子级接入的后端,例如包括自主设置算子的后端、使用后备的cpu算子接入的后端等,本公开对具体的硬件后端类型不作限制。
130.在一种可能的实现方式中,所述目标硬件后端为所述子模型可部署的硬件后端中预设优先级最高的硬件后端。
131.举例来说,可以将使用硬件厂商的推理库进行模型级接入的后端预设为优先级最高的硬件后端。在这种情况下,对内部模型结构进行拆分的过程中,可以先依照硬件厂商的推理库进行拆分,便于从内部模型结构中拆分出硬件厂商的推理库支持的部分;对于硬件厂商的推理库不支持的内部模型结构部分,再针对硬件厂商算子库或者自主设置的算子进行拆分,直至内部模型结构拆分出的每个子模型,分别对应一个目标硬件后端。
132.通过这种方式,可以基于待部署的硬件后端的预设优先级,对内部模型进行拆分,有利于提高拆分效率。并且还有利于将拆分后得到的子模型部署至硬件后端中预设优先级最高的硬件后端,提高后续神经网络模型的部署效率。
133.可见,通过步骤s22,可以在部署一个模型到一个硬件时,可同时利用各种接入层次的优点。而且,由于各硬件后端可以通过软件接口形式和编译器连接,针对新增的硬件设备,可以快速接入对应新增硬件设备的硬件后端,可扩展性比较强,有利于快速实现将神经网络模型部署到该硬件设备的功能,并且可以在接入效率、模型部署的指令、人力消耗上取得更好的平衡。
134.在步骤s22得到多个子模型,可在步骤s23中,针对任一子模型,根据与所述子模型对应的目标硬件后端,对所述子模型进行与该目标硬件后端相关的模型变换操作,得到部署到所述目标硬件后端的离线子模型;
135.举例来说,可以从全部子模型中,一个一个地根据匹配的目标硬件后端,对子模型进行与其对应的目标硬件后端相关的模型变换操作,直至将全部子模型部署到对应的目标硬件后端,得到部署到目标硬件后端的离线子模型。
136.或者,还可以根据各子模型匹配的目标硬件后端,并行地对各子模型进行与目标硬件后端相关的模型变换操作,将各个子模型分别部署到对应的目标硬件后端,得到各个部署到目标硬件后端的离线子模型。
137.应当理解,本公开可以一个一个地对目标硬件后端进行子模型部署,也可以并行地对各目标硬件后端进行子模型部署,本公开对具体的部署方式不作限制。
138.在一种可能的实现方式中,步骤s23可包括:
139.在步骤s231中,对所述子模型进行与所述目标硬件后端相关的模型变换操作,得到第一状态的子模型;
140.在步骤s232中,对所述第一状态的子模型进行格式转换,得到第二状态的子模型,其中,所述第二状态的子模型适应于所述目标硬件后端的输入格式;
141.在步骤s233中,将所述第二状态的子模型部署到所述目标硬件后端,得到所述离线子模型。
142.举例来说,考虑到在步骤s21~步骤s22过程中,所应用的与硬件后端相关的模型变换操作,不一定对应该子模型实际部署的硬件后端,因此,在针对目标硬件后端实际部署前,需要再次对子模型进行与目标硬件后端相关的模型变换操作。
143.可在步骤s231中,根据目标硬件后端中后端相关模型变换模块,对子模型进行与目标硬件后端相关的模型变换操作,例如将目标硬件后端不支持的算子替换成目标硬件后端支持的等价算子,得到第一状态的子模型。
144.不同的目标硬件后端,可包括匹配同一硬件设备的不同硬件后端,各目标硬件后端对应的子模型的输入格式可能各不相同。因此,在得到第一状态的子模型之后,需要将第一状态的子模型转换成目标硬件后端需要的格式。可以在步骤s232中,根据编译器的模型格式转换模块,对第一状态的子模型进行格式转换,得到适应于目标硬件后端输入格式的第二状态的子模型。
145.在完成步骤s231与s232之后,可以根据目标硬件后端中模型部署模块,将第二状态的子模型部署到目标硬件后端,得到离线子模型,也即目标硬件后端包括的算子构成的子图。
146.可见,在硬件后端的设计上,每个硬件设备可以对应一个或多个硬件后端,每个硬件后端可为编译器提供不同层次的接入端口。
147.通过这种方式,得到部署到各个目标硬件后端的离线子模型,有利于充分利用各个硬件后端的优势。
148.在步骤s23中得到了部署到对应目标硬件后端的多个离线子模型,可在步骤s24中,根据多个子模型的离线子模型以及所述串联关系,则将各离线子模型串联成离线模型。
149.其中,由于每个子模型可对应一个部署到目标硬件后端的离线子模型,各子模型间数据输入输出的依赖关系,与对应的各离线子模型间数据输入输出的依赖关系是一致的,因此,可以将子模型间的串联关系,确定为对应的离线子模型间的串联关系。
150.因此,在步骤s21~s24所述的编译过程中,可以同时使用多种层次的接入端口,将神经网络模型拆分成多个离线子模型,分别部署到更合适的硬件后端,可以充分利用不同硬件后端的优点;并且,通过使用硬件后端相关的模型变换,可以使待部署的使神经网络模型不经手工修改,就可部署到多个硬件后端,一次编译就可以实现对不同硬件设备(例如推理硬件)的适配,有利于在运行时隔离硬件设备工具链接口上的差异,对业务层提供统一神经网络模型推理接口。
151.在步骤s2得到包括多个离线子模型的离线模型之后,在运行阶段,可以通过步骤s3中,将所述多个离线子模型下发至对应的硬件设备,以使硬件设备可以运行离线模型,实现离线模型在对应硬件设备上的部署。
152.在一种可能的实现方式中,步骤s3可包括:通过模型解释器读取所述离线模型的多个所述离线子模型以及多个所述离线子模型间的所述串联关系;其中,所述模型解释器根据多个所述离线子模型间的所述串联关系,在所述硬件设备运行时串联多个所述离线子模型。
153.举例来说,假设编译阶段的多个硬件后端对应一个硬件设备h1,可通过模型解释器将离线模型的多个离线子模型,以及离线子模型间的串联关系读取到内存,即动态随机存取存储器(dynamic random access memory,dram),然后将多个离线子模型下发至匹配的硬件设备,也即可将全部的模型子模型下发到硬件设备h1,模型解释器可根据多个离线子模型间的串联关系,在硬件设备h1中运行时串联多个所述离线子模型。
154.或者,假设编译阶段的多个硬件后端对应多个硬件设备,例如可包括硬件设备h1
和硬件设备h2。可通过模型解释器将离线模型的多个离线子模型,以及离线子模型间的串联关系读取到内存,然后将多个离线子模型下发至匹配的硬件设备。可将匹配硬件设备h1的各离线子模型下发到硬件设备h1,同时将匹配硬件设备h2的各离线子模型下发到硬件设备h2,模型解释器可根据多个离线子模型间的串联关系,在所述硬件设备运行时串联多个所述离线子模型,通过硬件设备h1和硬件设备h2的配合,共同运行包括多个离线子模型的离线模型。
155.通过这种方式,可以综合利用各硬件设备的优势,并且在硬件设备运行离线模型的过程,屏蔽硬件后端的差异,有利于为业务层提供更稳定、统一的调用接口。
156.因此,根据本公开的实施例,在编译过程中,可以同时使用多种层次的接入端口,将神经网络模型拆分成多个离线子模型,分别部署到更合适的硬件后端,可以充分利用不同硬件后端的优点;并且,通过使用硬件后端相关的模型变换,可以使待部署的使神经网络模型不经手工修改,就可部署到多个硬件后端,一次编译就可以实现对不同硬件设备(例如推理硬件)的适配,有利于在运行时隔离硬件设备工具链接口上的差异,对业务层提供统一神经网络模型推理接口。
157.可以理解,本公开提及的上述各个方法实施例,在不违背原理逻辑的情况下,均可以彼此相互结合形成结合后的实施例,限于篇幅,本公开不再赘述。本领域技术人员可以理解,在具体实施方式的上述方法中,各步骤的具体执行顺序应当以其功能和可能的内在逻辑确定。
158.此外,本公开还提供神经网络模型部署装置、电子设备、计算机可读存储介质、程序,上述均可用来实现本公开提供的任一种神经网络模型部署方法,相应技术方案和描述和参见方法部分的相应记载,不再赘述。
159.图4示出根据本公开实施例的神经网络模型部署装置的框图,如图4所示,所述装置应用于电子设备,包括:
160.获取模块41,用于获取待部署的神经网络模型;
161.编译模块42,用于对所述神经网络模型进行编译,得到编译后的离线模型,所述离线模型包括多个离线子模型,每个所述离线子模型部署到对应的硬件后端,各种硬件后端分别对应于将神经网络模型部署至硬件设备的不同工具链,每个硬件设备对应于至少一个硬件后端;
162.运行模块43,用于将所述多个离线子模型下发至对应的硬件设备。
163.在一种可能的实现方式中,所述编译模块包括42:结构转换模块,用于对所述神经网络模型进行结构转换,得到适应于模型变换的内部模型结构;拆分模块,用于根据待部署的各个所述硬件后端,对所述内部模型结构进行拆分,得到多个子模型以及所述多个子模型间的串联关系,其中,每一子模型对应一个目标硬件后端;离线子模型获取模块,用于针对任一子模型,对所述子模型进行与所述目标硬件后端相关的模型变换操作,得到部署到所述目标硬件后端的离线子模型;离线模型确定模块,用于根据多个所述离线子模型以及所述串联关系,确定所述离线模型。
164.在一种可能的实现方式中,所述目标硬件后端为所述子模型可部署的硬件后端中预设优先级最高的硬件后端。
165.在一种可能的实现方式中,所述编译模块42还包括第一模块,用于:所述根据待部
署的各个所述硬件后端,对所述内部模型结构进行拆分之前,对所述内部模型结构进行与硬件后端相关的模型变换操作和模型优化操作。
166.在一种可能的实现方式中,对所述内部模型结构进行与硬件后端相关的模型变换操作,包括:对所述内部模型结构进行与预设优先级最高的硬件后端相关的模型变换操作。
167.在一种可能的实现方式中,所述编译模块42还包括第二模块,用于:对所述内部模型结构进行与硬件后端相关的模型变换操作和模型优化操作之前,对所述内部模型结构进行与硬件后端无关的模型优化操作。
168.在一种可能的实现方式中,所述离线子模型获取模型,用于:对所述子模型进行与所述目标硬件后端相关的模型变换操作,得到第一状态的子模型;对所述第一状态的子模型进行格式转换,得到第二状态的子模型,其中,所述第二状态的子模型适应于所述目标硬件后端的输入格式;将所述第二状态的子模型部署到所述目标硬件后端,得到所述离线子模型。
169.在一种可能的实现方式中,所述运行模块43,用于:通过模型解释器读取所述离线模型的多个所述离线子模型以及多个所述离线子模型间的所述串联关系;将各个所述离线子模型分别下发到对应的硬件设,其中,所述模型解释器根据多个所述离线子模型间的所述串联关系,在所述硬件设备运行时串联多个所述离线子模型。
170.在一种可能的实现方式中,所述硬件后端包括:使用硬件厂商推理库的硬件后端、使用硬件厂商算子库的硬件后端或使用非硬件厂商提供的算子的硬件后端。
171.在一些实施例中,本公开实施例提供的装置具有的功能或包含的模块可以用于执行上文方法实施例描述的方法,其具体实现可以参照上文方法实施例的描述,为了简洁,这里不再赘述。
172.本公开实施例还提出一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述方法。计算机可读存储介质可以是易失性或非易失性计算机可读存储介质。
173.本公开实施例还提出一种电子设备,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为调用所述存储器存储的指令,以执行上述方法。
174.本公开实施例还提供了一种计算机程序产品,包括计算机可读代码,或者承载有计算机可读代码的非易失性计算机可读存储介质,当所述计算机可读代码在电子设备的处理器中运行时,所述电子设备中的处理器执行上述方法。
175.电子设备可以被提供为终端、服务器或其它形态的设备。
176.图5示出根据本公开实施例的一种电子设备800的框图。例如,电子设备800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等终端。
177.参照图5,电子设备800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(i/o)的接口812,传感器组件814,以及通信组件816。
178.处理组件802通常控制电子设备800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模
块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
179.存储器804被配置为存储各种类型的数据以支持在电子设备800的操作。这些数据的示例包括用于在电子设备800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(sram),电可擦除可编程只读存储器(eeprom),可擦除可编程只读存储器(eprom),可编程只读存储器(prom),只读存储器(rom),磁存储器,快闪存储器,磁盘或光盘。
180.电源组件806为电子设备800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为电子设备800生成、管理和分配电力相关联的组件。
181.多媒体组件808包括在所述电子设备800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(lcd)和触摸面板(tp)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当电子设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
182.音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(mic),当电子设备800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
183.i/o接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
184.传感器组件814包括一个或多个传感器,用于为电子设备800提供各个方面的状态评估。例如,传感器组件814可以检测到电子设备800的打开/关闭状态,组件的相对定位,例如所述组件为电子设备800的显示器和小键盘,传感器组件814还可以检测电子设备800或电子设备800一个组件的位置改变,用户与电子设备800接触的存在或不存在,电子设备800方位或加速/减速和电子设备800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如互补金属氧化物半导体(cmos)或电荷耦合装置(ccd)图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
185.通信组件816被配置为便于电子设备800和其他设备之间有线或无线方式的通信。电子设备800可以接入基于通信标准的无线网络,如无线网络(wifi),第二代移动通信技术(2g)或第三代移动通信技术(3g),或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(nfc)模块,以促进短程通信。例如,在nfc模块可基于
射频识别(rfid)技术,红外数据协会(irda)技术,超宽带(uwb)技术,蓝牙(bt)技术和其他技术来实现。
186.在示例性实施例中,电子设备800可以被一个或多个应用专用集成电路(asic)、数字信号处理器(dsp)、数字信号处理设备(dspd)、可编程逻辑器件(pld)、现场可编程门阵列(fpga)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
187.在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器804,上述计算机程序指令可由电子设备800的处理器820执行以完成上述方法。
188.图6示出根据本公开实施例的一种电子设备1900的框图。例如,电子设备1900可以被提供为一服务器。参照图6,电子设备1900包括处理组件1922,其进一步包括一个或多个处理器,以及由存储器1932所代表的存储器资源,用于存储可由处理组件1922的执行的指令,例如应用程序。存储器1932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1922被配置为执行指令,以执行上述方法。
189.电子设备1900还可以包括一个电源组件1926被配置为执行电子设备1900的电源管理,一个有线或无线网络接口1950被配置为将电子设备1900连接到网络,和一个输入输出(i/o)接口1958。电子设备1900可以操作基于存储在存储器1932的操作系统,例如微软服务器操作系统(windows server
tm
),苹果公司推出的基于图形用户界面操作系统(mac os x
tm
),多用户多进程的计算机操作系统(unix
tm
),自由和开放原代码的类unix操作系统(linux
tm
),开放原代码的类unix操作系统(freebsd
tm
)或类似。
190.在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器1932,上述计算机程序指令可由电子设备1900的处理组件1922执行以完成上述方法。
191.本公开可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本公开的各个方面的计算机可读程序指令。
192.计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是(但不限于)电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(ram)、只读存储器(rom)、可擦式可编程只读存储器(eprom或闪存)、静态随机存取存储器(sram)、便携式压缩盘只读存储器(cd-rom)、数字多功能盘(dvd)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
193.这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计
算机可读存储介质中。
194.用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(isa)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如smalltalk、c 等,以及常规的过程式编程语言—诸如“c”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(lan)或广域网(wan)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(fpga)或可编程逻辑阵列(pla),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。
195.这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
196.这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
197.也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
198.附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
199.该计算机程序产品可以具体通过硬件、软件或其结合的方式实现。在一个可选实施例中,所述计算机程序产品具体体现为计算机存储介质,在另一个可选实施例中,计算机程序产品具体体现为软件产品,例如软件开发包(software development kit,sdk)等等。
200.以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也
不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献