一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种红外滤光片及其制备方法和在海洋气体遥感探测器中的应用与流程

2022-06-01 08:04:47 来源:中国专利 TAG:


1.本发明涉及一种红外滤光片及其制备方法和应用,尤其涉及一种具有2.8μm波段、2.35μm波段及1.59μm波段三通道红外滤光片,还涉及红外滤光片的制备方法和红外滤光片在海洋气体遥感探测器中的应用,属于遥感探测技术领域。


背景技术:

2.在海洋中的化学过程、生物过程、地质过程和放射性核素衰变过程中,也会产生一些气体,如一氧化碳、甲烷、氢、硫化氢、氧化亚氮、氦和氡等。大气中的二氧化碳及其他各种气体,不断通过界面进入海水;各种海水溶解气体,也不断越过界面进入大气:形成了气体成分在海-气之间的交换。而根据海水中气体的来源不同,组成的差异和分布的特点等,可研究海洋中发生的物理过程、化学过程、生物过程和地质过程。作为海洋探测的高科技手段,世界各重要国家都非常重视卫星海洋遥感应用,为了得到不同谱段的光谱信息,通常采用滤光片进行光谱选择。随着我国空间技术的不断发展,光学薄膜技术也不断突破,在海洋卫星探测领域取得令人瞩目的成就。传统的海洋气体遥感探测装置添加一种或多种红外滤光片来检测一种或多种气体,如需检测其他气体就需要更换红外滤光片,增加了遥感探测装置体积和重量,增加材料成本。


技术实现要素:

3.针对现有技术中的海洋气体遥感探测装置使用的红外滤光片存在的缺陷,本发明的第一个目的是在于提供一种具有2.8μm波段、2.35μm波段及1.59μm波段三通道的红外滤光片,可以通过该红外滤光片实现一种或多种气体的检测,检测无需更换其他红外滤光片,大大降低了遥感探测装置体积和重量,降低成本,且该红外滤光片能实现半高宽为100nm,峰值透过率达95%以上,截止区透过率小于0.1%,大大提高了检测信噪比,提高测量精确度。
4.本发明的第二个目的是在于提供一种红外滤光片的制备方法,该制备方法操作简单,易于实施,有利于大规模生产。
5.本发明的第三个目的是在于提供一种红外滤光片在海洋气体遥感探测器中的应用,该红外滤光片具有2.8μm波段、2.35μm波段及1.59μm波段三通道,将其用于海洋气体遥感探测器可以实现一种或多种气体同时检测,检测过程中无需更换其他红外滤光片,大大降低了遥感探测装置体积和重量,降低成本,且该红外滤光片能实现半高宽为100nm,峰值透过率达95%以上,截止区透过率小于0.1%,大大提高了检测信噪比,提高测量精确度,可用于海洋溶解气体的长期探测,特别是对co、甲烷、硫化氢准确的测量。
6.为了实现上述技术目的,本发明提供了一种红外滤光片,其由si基底及其表面的镀膜层构成;所述镀膜层由多层sio镀膜层和si镀膜层交替叠加构成。
7.作为一个优选的方案,所述镀膜层的总厚度为39517
±
10nm。
8.作为一个较优选的方案,所述镀膜层中si镀膜层的总厚度为14570
±
10nm,sio镀膜层的总厚度为24947
±
10nm。
9.作为一个较优选的方案,所述镀膜层中单层si镀膜层的厚度29~741nm,单层sio镀膜层的厚度为1~822nm。
10.作为一个最优选的方案,所述镀膜层由以下si镀膜层和sio镀膜层交替叠加构成:sio镀膜层,厚度为430
±
3nm;si镀膜层,厚度为253
±
3nm;sio镀膜层,厚度为462
±
3nm;si镀膜层,厚度为310
±
3nm;sio镀膜层,厚度为113
±
3nm;si镀膜层,厚度为311
±
3nm;sio镀膜层,厚度为73
±
3nm;si镀膜层,厚度为738
±
3nm;sio镀膜层,厚度为358
±
3nm;si镀膜层,厚度为510
±
3nm;sio镀膜层,厚度为429
±
3nm;si镀膜层,厚度为308
±
3nm;sio镀膜层,厚度为819
±
3nm;si镀膜层,厚度为126
±
3nm;sio镀膜层,厚度为535
±
3nm;si镀膜层,厚度为238
±
3nm;sio镀膜层,厚度为366
±
3nm;si镀膜层,厚度为474
±
3nm;sio镀膜层,厚度为246
±
3nm;si镀膜层,厚度为239
±
3nm;sio镀膜层,厚度为375
±
3nm;si镀膜层,厚度为277
±
3nm;sio镀膜层,厚度为459
±
3nm;si镀膜层,厚度为77
±
3nm;sio镀膜层,厚度为381
±
3nm;si镀膜层,厚度为356
±
3nm;sio镀膜层,厚度为550
±
3nm;si镀膜层,厚度为262
±
3nm;sio镀膜层,厚度为400
±
3nm;si镀膜层,厚度为183
±
3nm;sio镀膜层,厚度为255
±
3nm;si镀膜层,厚度为145
±
3nm;sio镀膜层,厚度为272
±
3nm;si镀膜层,厚度为368
±
3nm;sio镀膜层,厚度为294
±
3nm;si镀膜层,厚度为159
±
3nm;sio镀膜层,厚度为352
±
3nm;si镀膜层,厚度为471
±
3nm;sio镀膜层,厚度为316
±
3nm;si镀膜层,厚度为128
±
3nm;sio镀膜层,厚度为98
±
3nm;si镀膜层,厚度为242
±
3nm;sio镀膜层,厚度为625
±
3nm;si镀膜层,厚度为165
±
3nm;sio镀膜层,厚度为183
±
3nm;si镀膜层,厚度为315
±
3nm;sio镀膜层,厚度为436
±
3nm;si镀膜层,厚度为129
±
3nm;sio镀膜层,厚度为221
±
3nm;si镀膜层,厚度为226
±
3nm;sio镀膜层,厚度为401
±
3nm;si镀膜层,厚度为220
±
3nm;sio镀膜层,厚度为1~3nm;si镀膜层,厚度为271
±
3nm;sio镀膜层,厚度为484
±
3nm;si镀膜层,厚度为241
±
3nm;sio镀膜层,厚度为470
±
3nm;si镀膜层,厚度为448
±
3nm;sio镀膜层,厚度为308
±
3nm;si镀膜层,厚度为176
±
3nm;sio镀膜层,厚度为247
±
3nm;si镀膜层,厚度为310
±
3nm;sio镀膜层,厚度为414
±
3nm;si镀膜层,厚度为140
±
3nm;sio镀膜层,厚度为252
±
3nm;si镀膜层,厚度为277
±
3nm;sio镀膜层,厚度为623
±
3nm;si镀膜层,厚度为43
±
3nm;sio镀膜层,厚度为184
±
3nm;si镀膜层,厚度为315
±
3nm;sio镀膜层,厚度为625
±
3nm;si镀膜层,厚度为32
±
3nm;sio镀膜层,厚度为184
±
3nm;si镀膜层,厚度为154
±
3nm;sio镀膜层,厚度为491
±
3nm;si镀膜层,厚度为305
±
3nm;sio镀膜层,厚度为409
±
3nm;si镀膜层,厚度为223
±
3nm;sio镀膜层,厚度为548
±
3nm;si镀膜层,厚度为94
±
3nm;sio镀膜层,厚度为339
±
3nm;si镀膜层,厚度为246
±
3nm;sio镀膜层,厚度为465
±
3nm;si镀膜层,厚度为156
±
3nm;sio镀膜层,厚度为522
±
3nm;si镀膜层,厚度为182
±
3nm;sio镀膜层,厚度为794
±
3nm;si镀膜层,厚度为252
±
3nm;sio镀膜层,厚度为409
±
3nm;si镀膜层,厚度为356
±
3nm;sio镀膜层,厚度为485
±
3nm;si镀膜层,厚度为265
±
3nm;sio镀膜层,厚度为399
±
3nm;si镀膜层,厚度为213
±
3nm;sio镀膜层,厚度为662
±
3nm;si镀膜层,厚度为48
±
3nm;sio镀膜层,厚度为813
±
3nm;si镀膜层,厚度为209
±
3nm;sio镀膜层,厚度为513
±
3nm;si镀膜层,厚度为161
±
3nm;sio镀膜层,厚度为591
±
3nm;si镀膜层,厚度为229
±
3nm;sio镀膜层,厚度为550
±
3nm;si镀膜层,厚度为181
±
3nm;sio镀膜层,厚度为620
±
3nm;si镀膜层,厚度为186
±
3nm;
sio镀膜层,厚度为622
±
3nm;si镀膜层,厚度为209
±
3nm;sio镀膜层,厚度为670
±
3nm;si镀膜层,厚度为290
±
3nm;sio镀膜层,厚度为469
±
3nm;si镀膜层,厚度为221
±
3nm;sio镀膜层,厚度为491
±
3nm;si镀膜层,厚度为473
±
3nm;sio镀膜层,厚度为238
±
3nm;si镀膜层,厚度为184
±
3nm;sio镀膜层,厚度为577
±
3nm;si镀膜层,厚度为223
±
3nm。
11.本发明优选的镀膜层通过对每个镀膜层材料的选择、每个镀膜层厚度的优化以及镀膜层的层数进行优化,最终获得性能最佳的红外滤光片,其不但具有2.8μm波段、2.35μm波段及1.59μm波段三通道,而且具有半高宽为100nm,峰值透过率达95%以上,截止区透过率小于0.1%的特点。
12.本发明还提供了一种红外滤光片的制备方法,该方法是在si基底表面通过离子溅射镀膜方式依次交替镀制sio镀膜层和si镀膜层,即得。通过离子溅射镀膜方式制备镀膜层以及利用不同材料制备叠加镀膜层这是本领域常见的技术。
13.本发明还提供了一种红外滤光片的应用,将红外滤光片作为海洋气体遥感探测器三通道红外滤光片应用。
14.作为一个优选的方案,将红外滤光片作为2.8μm波段、2.35μm波段、1.59μm波段三通道红外滤光片用于海洋气体遥感探测器。
15.本发明的红外滤光片用于海洋气体遥感探测器可以用于测量海洋溶解气体为:co、甲烷及硫化氢。与短波长范围相比,co检测在2.8μm和4.3μm等长波长处具有更强的共振吸收特性。甲烷检测在2.35μm(近红外区的尾部还没到中红外区)处具有更强的共振吸收特性。硫化氢检测在1.59μm和2.64μm处具有更强的共振吸收性。co检测优先选择2.8μm波段,甲烷检测优先选择2.35μm波段,硫化氢检测优先选择1.59μm波段,而本发明技术方案的红外滤光片具有2.8μm波段、2.35μm波段、1.59μm波段三通道,可以用于海洋气体遥感探测器对co、甲烷及硫化氢的检测。
16.相对现有技术,本发明技术方案带来的有益技术效果:
17.本发明提供的红外滤光片具有2.8μm波段、2.35μm波段及1.59μm波段三通道,可以用于海洋溶解气体的长期探测,放置一片红外滤光片可以同时检测三种海洋溶解气体,为遥感探测装置节省空间,减少了成本,解决了现有技术中,传统的海洋气体遥感探测装置需要添加一种或多种红外滤光片来检测一种或多种气体,如需检测其他气体就需要更换红外滤光片,导致遥感探测装置体积和重量以及材料成本增加等技术问题。
18.本发明提供的红外滤光片能实现半高宽为100nm,峰值透过率达95%以上,截止区透过率小于0.1%,大大提高了信噪比,为精确测量,所需测量的气体提供了基本保证,特别是可实现co、甲烷和硫化氢准确的测量。
19.本发明提供的红外滤光片的制备方法操作简单,易于实施,有利于大规模生产。
附图说明
20.图1为红外滤光片结构示意图;1为基底,2为sio膜层,3为si膜层。
21.图2红外光谱透过率测试图。
具体实施方式
22.下面详细描述本技术的实施例,所述实施例的示例在附图中示出,其中自始至终
相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本技术,而不能解释为对本技术的限制。
23.本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本技术所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
24.实施例1
25.本实施例例举的红外滤光片具体结构如图1所示:以si为原材料的基底、以sio为镀膜材料的第一镀膜层,以si为镀膜材料的第二镀膜层;第一镀膜层和第二镀膜层交替镀制,镀膜层的总厚度39517.77nm,其中,si镀膜层总厚度为14570.16nm,sio镀膜层总厚度为24947.61nm。镀膜层的制备方法采用现有常见的离子溅射镀膜设备,bsv1030。根据镀膜层结构(包括膜层的层数、各膜层厚度等)的设计,反复交替镀制第一镀膜层sio膜料和第二镀膜层si膜料最终得到所需镀膜层。所述si膜层的镀膜沉积速率为1.5nm/s,所述sio膜层的镀膜沉积速率为2.3~2.7nm/s。采用16cm的射频离子源轰击靶材,使靶材粒子沉积于工件盘基底上;其中,离子溅射镀膜机的加热系统设置温度至130℃,温度波动≤
±
5℃。镀膜机真空室压力≤2*10
‑ tor,通上氩气、氧气压力设置到30pai。镀制时间为膜层厚度/沉积速率。镀制sio层厚度430.34nm,镀制si层厚度为253.93nm,镀制sio层厚度为462.49nm,镀制si层厚度为310.05nm,镀制sio层厚度为113.96nm,镀制si层厚度为311.14nm,镀制sio层厚度为73.45nm,镀制si层厚度为738.01nm,镀制sio层厚度为358.96nm,镀制si层厚度为510.02nm,镀制sio层厚度为429.63nm,镀制si层厚度为308.07nm,镀制sio层厚度为819.3nm,镀制si层厚度为126.15nm,镀制sio层厚度为535.89nm,镀制si层厚度为238.54nm,镀制sio层厚度为366.32nm,镀制si层厚度为474.55nm,镀制sio层厚度为246.04nm,镀制si层厚度为239.39nm,镀制sio层厚度为375.82nm,镀制si层厚度为277.67nm,镀制sio层厚度为459.71nm,镀制si层厚度为77.3nm,镀制sio层厚度为381.48nm,镀制si层厚度为356.05nm,镀制sio层厚度为550.56nm,镀制si层厚度为262.71nm,镀制sio层厚度为400.93nm,镀制si层厚度为183.01nm,镀制sio层厚度为
26.255.18nm,镀制si层厚度为145.37nm,镀制sio层厚度为272.62nm,镀制si层厚度为368.47nm,镀制sio层厚度为294.37nm,镀制si层厚度为159.42nm,镀制sio层厚度为352.31nm,镀制si层厚度为471.47nm,镀制sio层厚度为316.32nm,镀制si层厚度为128.76nm,镀制sio厚度为98.99nm,镀制si层厚度为242.53nm镀制sio层厚度为625.26nm,镀制si层厚度为165.37nm,镀制sio层厚度为183.58nm,镀制si层厚度为315.73nm,镀制sio层厚度为436.1nm,镀制si层厚度为129.18nm,镀制sio层厚度为221nm,镀制si层厚度为226.42nm,镀制sio层厚度为401.46nm,镀制si层厚度为220.48nm,镀制sio层厚度为1.23nm,镀制si层厚度为271.2nm,镀制sio层厚度为484.65nm,镀制si层厚度为241.63nm,镀制sio层厚度为470.85nm镀制si层厚度为448.89nm,镀制sio层厚度为308.86nm,镀制si层厚度为176.66nm,镀制sio层厚度为247.63nm,镀制si层厚度为310.58nm,镀制sio层厚度为414.57nm,镀制si层厚度为140.63nm,镀制sio层厚度为252.3nm,镀制si层厚度为277.29nm,镀制sio层厚度为623.51nm,镀制si层厚度为43.12nm,镀制sio层厚度为
184.73nm,镀制si层厚度为315.14nm,镀制sio层厚度为625.15nm,镀制si层厚度为32.98nm,镀制sio层厚度为184.31nm,镀制si层厚度为154.11nm,镀制sio层厚度为491.91nm,镀制si层厚度为305.71nm,镀制sio层厚度为409.02nm,镀制si层厚度为223.28nm,镀制sio层厚度为548.71nm,镀制si层厚度为94.46nm,镀制sio层厚度为339.57nm,镀制si层厚度为246.86nm,镀制sio层厚度为465.64nm,镀制si层厚度为156.92nm,镀制sio层厚度为522.18nm,镀制si层厚度为182.69nm,镀制sio层厚度为794.64nm,镀制si层厚度为252.09nm,镀制sio层厚度为409.3nm,镀制si层厚度为356.79nm,镀制sio层厚度为485.07nm,镀制si层厚度为265.42nm,镀制sio层厚度为399.23nm,镀制si层厚度为213.51nm,镀制sio层厚度为662.27nm,镀制si层厚度为48nm,镀制sio层厚度为813.86nm,镀制si层厚度为209.05nm,镀制sio层厚度为513.52nm,镀制si层厚度为161.86nm,镀制sio层厚度为591.51nm,镀制si层厚度为229.16nm,镀制sio层厚度为550.57nm,镀制si层厚度为181.83nm,镀制sio层厚度为620.43nm,镀制si层厚度为186.58nm,镀制sio层厚度为622.46nm,镀制si层厚度为209.47nm,镀制sio层厚度为670.95nm,镀制si层厚度为290.96nm,镀制sio层厚度为469.66nm,镀制si层厚度为221.51nm,镀制sio层厚度491.44nm,镀制si层厚度为473.25nm,镀制sio层厚度为238.03nm,镀制si层厚度为184.94nm,镀制sio层厚度为577.79nm,镀制si层厚度为223.85nm。
27.制备的红外滤光片具有2.8μm波段、2.35μm波段、1.59μm波段三通道。经测试1.59μm波段、2.35μm波段、2.8μm波段三通道红外滤光片能实现半高宽分别在1500nm~1648nm,2274nm~2384nm,4500nm~4660nm波段,峰值透过率达99%以上,截止区透过率小于0.1%,具体如图2所示。
28.对比实施例1
29.与实施例1的区别在于:将以si为第二镀膜层材料替换成以ge作为第二镀膜层镀膜材料,调整后的重新设计膜系结构,发现以si为基底,sio为第一镀膜层镀膜材料,以ge为第二镀膜层镀膜材料无法实现三带通红外滤光片,原因是ge在1.59um波段具有极高折射率n=5.22,但其并不适用于2.35μm、2.8μm波段。
30.对比实施例2
31.与实施例1的区别在于:将以si为第二镀膜层材料替换成以tio2作为第二镀膜层镀膜材料,调整后的重新设计膜系结构,发现以si为基底,sio为第一镀膜层镀膜材料,以tio2为第二镀膜层镀膜材料无法实现三带通红外滤光片,tio2在可见光波段具有极高透射率t=92%,但其只能在并不适用于2.35μm、2.8μm波段。
32.对比实施例3
33.与实施例1的区别在于:膜层设计减少最后两层,且将第一镀膜层材料与第二镀膜层材料交换,即以si作为镀膜材料的第一镀膜层,以sio为镀膜材料的第二镀膜层;第一镀膜层和第二镀膜层交替镀制。以此得到的膜系结构不成立,无法实现三带通红外滤光片。
34.对比实施例4
35.与实施例1的区别在于:将以si为第二镀膜层材料替换成以zns作为第二镀膜层镀膜材料,调整后的重新设计膜系结构,发现以si为基底,sio为第一镀膜层镀膜材料,以zns为第二镀膜层镀膜材料无法实现三带通红外滤光片,多光谱多晶zns是目前用作红外窗口
的最佳材料,但是zns的理论透射率仅为为75%(不考虑吸收)。
36.上述具体实施方式仅是本发明的具体个案,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施方式。但是凡是未脱离本发明技术原理的前提下,依据本发明的技术实质对以上实施方式所作的任何简单修改、等同变化与改型,皆应落入本发明的专利保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献