一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

可生物降解紫外光固化医用粘合剂及其制备方法和应用

2022-06-02 15:45:32 来源:中国专利 TAG:


1.本发明涉及高分子材料合成技术领域,更具体的说是涉及可生物降解紫外光固化医用粘合剂及其制备方法和应用。


背景技术:

2.组织伤口封闭是外科手术的最后一环,也是外科手术成功的关键。传统的外科缝合线和缝合钉是最常用的组织封闭手段,但其具有实施技术难度高,耗时长,容易引起感染,愈合不完全等缺陷,限制了在临床上的应用。
3.组织粘合剂是缝合线和缝合钉的一种替代产品,其使用简便,时间短,产生的疼痛更少,不需要移除,并且通常可带来更好的美容效果。然而,现有的组织粘合剂也存在一些固有缺陷,例如,基于氰基丙烯酸酯的组织粘合剂能非常牢固地粘附在组织上,但不具有弹性,且会引起严重的炎症反应和毒性,限制了其在生物组织上的应用;水凝胶如交联的聚乙二醇和纤维蛋白原基粘合剂生物相容性好,但粘合性相对较差,因此大多数水凝胶仅充当局部敷料或密封剂。理想的组织粘合剂应为液体,以易于使用,但在施胶后可以迅速固化;同时,还应保持粘附力和内聚强度、生物降解性、弹性和生物相容性。
4.近年来,基于光固化的粘合剂由于其可控的固化速率和力学性质,更好的体内稳定性以及组织粘附性,在外科手术中组织封闭中显示出的巨大潜力。然而,目前光固化的组织粘附剂多为水溶性材料,容易吸收体液从而造成粘附性和内聚力的降低,导致手术失败;并且由于人体各种组织之间的差异性,如何更有针对性地开发适合各种情况的组织封闭剂存在巨大的挑战。
5.因此,亟待开发一种制备简单、成本低,并且具有优良的粘结性能、可降解性和生物相容性的组织粘合剂。


技术实现要素:

6.有鉴于此,本发明提供了可生物降解紫外光固化医用粘合剂及其制备方法,该方法简单易控,无溶剂残留;制备的粘合剂具有优异的粘附性、可降解性以及生物相容性;且其固化使用方便、快速。
7.为了实现上述目的,本发明采用如下技术方案:
8.可生物降解紫外光固化医用粘合剂,由衣康酸、癸二酸与木糖醇通过熔融缩聚一步反应获得。
9.衣康酸是一种不饱和的二元有机酸,是葡萄糖体内代谢的一种产物,具有显著抗炎抗菌活性,广泛参与抗炎信号通路,将其引入粘合剂的合成,可缓解因粘合剂造成的局部炎症、有效促进相关组织的修复。并且,衣康酸具有共轭不饱和的双键结构,将其引入到粘合剂中,通过光固化可提升体系内聚力,进而简化固化条件,有效调控粘合剂固化时间与降解周期。木糖醇多羟基的氢键可进一步有效调节粘结性能,癸二酸的添加可进一步调节体系弹性,三者不可或缺。通过上述材料制成疏水的聚酯材料,可有效避免因吸水造成的内聚
力降低问题;另外,使用来源于代谢系统且生物相容性良好的二元酸和多元醇作为可生物降解粘合剂材料合成单体,可保证制备的粘合剂材料具有较好的生物相容性。
10.优选地,癸二酸与衣康酸的投料摩尔比为9:1-5:5;
11.癸二酸、衣康酸的总投料量与木糖醇的摩尔比为1:2-2:1。
12.进一步地,可生物降解紫外光固化医用粘合剂粘度为50-1100pa
·
s。
13.进一步优选地,癸二酸与衣康酸的投料摩尔比为9:1-7:3;
14.癸二酸、衣康酸的总投料量与木糖醇的摩尔比为1:2-1:1。
15.可生物降解紫外光固化医用粘合剂的制备方法,步骤如下:
16.将衣康酸、癸二酸与木糖醇混合,在惰性气体保护下加热熔融;随后在真空条件下、100-150℃反应1-24h;降温后得到可生物降解紫外光固化医用粘合剂pxis。
17.优选地,真空条件下,135-150℃反应4-8h。
18.优选地,加热熔融的温度为130-150℃,时间为0.5-6h;
19.真空条件的真空度为5-100pa。
20.上述可生物降解紫外光固化医用粘合剂在制备粘结材料中的应用,将可生物降解紫外光固化医用粘合剂与催化剂量的光引发剂混合后,均匀涂抹在待粘结物体表面,经紫外光照后,固化形成薄膜状粘结材料。
21.优选地,光引发剂包括i2959、i1173、安息香双甲醚、(2,4,6-三甲基苯甲酰基)二苯基氧化膦;光引发剂催化剂量为衣康酸摩尔量的0.05-1%。
22.优选地,紫外光照时间为10-300s,紫外光波长为365nm。
23.一种医用粘合剂,将上述可生物降解紫外光固化医用粘合剂与催化剂量的光引发剂混合,均匀涂抹在待粘结物体表面,经紫外光照后固化形成。
24.一种医用粘合剂,包括上述可生物降解紫外光固化医用粘合剂和光引发剂。
25.由上述技术方案可知,本发明使用生物相容性良好的单体材料衣康酸、癸二酸与木糖醇制备可生物降解紫外光固化医用粘合剂,可提高粘合剂的生物相容性;引入衣康酸制备粘合剂,可直接进行紫外光固化,无需增加第二步反应引入双键,并且固化时间短易于操作;本发明粘合剂常温下为可流动的粘性半固体,固化后具有优异的组织粘附性,进而可以满足不同组织封闭的需求。
附图说明
26.图1所示为实施例1所得的粘合剂的红外谱图(由上至下分别为pxis粘合剂、癸二酸、衣康酸、木糖醇);
27.图2所示为pxis粘合剂及商用胶水的剪切粘附强度;
28.图3所示为pxis粘合剂及商用胶水的剪切粘附能;
29.图4所示为pxis粘合剂皮下埋植一个月后的病理切片图;
30.图5所示为pxis粘合剂与缝合处理大鼠皮肤伤口对比图;
31.图6所示为pxis粘合剂与缝合处理大鼠皮肤伤口第14天伤口的病理切片图。
具体实施方式
32.下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例
仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
33.实施例1
34.分别称取16.18g(0.08mol)的癸二酸,2.60g(0.02mol)的衣康酸与15.2g(0.1mol)的木糖醇,投入三颈圆底烧瓶中,在140℃和氮气保护下油浴磁力搅拌30min,使反应单体完全熔融。随后通过真空泵降低体系压强至10pa并在135℃下,缩聚反应8h,得到pxis-1粘合剂。附图1所示为pxis-1粘合剂的红外光谱图,证明成功合成了聚合物pxis。
35.实施例2-10
36.在实施例1的基础上,对各单体用量以及缩聚反应温度、时间进行调整,如表1所示。
37.表1实施例2-10的原料、配比及反应时间、温度
[0038][0039][0040]
组织粘合剂在固化前应均为可流动的粘性半固体,以有利于随后应用时的施胶。利用流变仪测试实施例1-10得到的pxis粘合剂在常温下的复合粘度,测试结果如下表所示,pxis的粘度与原料配比、反应温度和反应时间均有密切的关系。
[0041]
表2实施例1-10所得粘合剂的粘度及固化时间
[0042][0043]
组织粘合剂还应具有合适的固化时间,过快或过慢的固化时间均不利于实际操作。将pxis与光引发剂混合均匀,并在365nm激光(200mw/cm-2
)下固化90s,记录其完全固化时间,如表2所示,其固化时间主要受衣康酸含量的影响,随着衣康酸含量的提高,固化时间加快。
[0044]
综合考虑pxis的粘度和固化时间,随后选取pxis-1,pxis-3,pxis-6进行如下实验。
[0045]
利用搭接剪切拉伸试验测试pxis粘合剂的粘附性能:
[0046]
首先,选用宽度为1cm玻璃板为基材,将20wt%的明胶溶液均匀涂抹在玻璃板上以模拟组织表面;常温下干燥24h后,再进行搭接剪切实验测试。pxis施胶前与衣康酸摩尔量0.58%的光引发剂i2959混合均匀,滴加到处理过的玻璃板一端,均匀涂抹;随后将另一块玻璃板搭接在有pxis涂抹的玻璃板上,搭接区域为1cm
×
1cm;然后对其进行原位光照固化(波长365nm,200mw/cm-2
),使两块搭接的玻璃板粘接良好,整体不发生相对位移。利用万能拉力机对各组玻璃板抗剪切拉伸强度进一步测试,使用同样方法测试商用的peg胶水,聚氨酯胶水,pvc胶水,胶原纤维生物胶水以及氰酸酯胶水的剪切粘附强度。剪切粘附强度指的是玻璃板完全剥离的最大拉伸强度,剪切黏附能指的是从拉伸到完全剥离整个过程中的做功,通过拉伸曲线积分得到。附图2为pxis粘合剂及商用胶水的剪切粘附强度,附图3为pxis粘合剂及商用胶水的剪切粘附能。
[0047]
附图2结果显示紫外光固化后pxis的剪切粘附强度达到了2.7~7.5mpa,其最大剪切粘附强度是聚氨酯胶水的8.4倍,peg胶水的122倍,胶原纤维生物胶水167倍,pvc胶水的16.5倍,氰酸酯胶水的2.0倍。并且,由于pxis固化后具有良好的弹性和延展性,可以有效耗散粘结部位所受到的剪切拉伸应力。而如氰酸酯胶水,虽然具有很强的界面作用力,但其固化后为无任何弹性的界面,因此对应力的耗散较差,黏附能较低。如附图3所示,pxis粘合剂的粘附能达到13.3~22.8kj/m-2
,其最大粘附能是聚氨酯胶水的11.4倍,peg胶水的51倍,胶原纤维生物胶水77倍,pvc胶水的11.6倍,氰酸酯胶水的8.3倍。因此pxis粘合剂具有优异的粘附性能。
[0048]
将200μl pxis粘合剂固化后样品置入5ml含100u/ml脂肪酶的pbs溶液中,并在37℃的恒温振荡器中模拟体内环境,测试pxis粘合剂的体外降解周期。各样品完全降解时间如表3,说明所得的pxis粘合剂具有良好的生物可降解性。
[0049]
表3 pxis粘合剂的降解周期
[0050][0051][0052]
将200μlpxis粘合剂固化后埋植到balb/c小鼠侧背部。一个月后,取埋植部位的皮肤组织进行伊红-苏木素染色,以测试材料体内的生物相容性和炎症反应。结果如附图4所示,相比于正常的皮肤组织,材料埋植部位的组织有少量的炎性细胞浸润。但材料并没有引起大量的炎症反应或皮肤的结构性病变,证明本发明所得pxis粘合剂具有良好的组织生物相容性。
[0053]
为了拓展pxis粘合剂的应用,构建大鼠皮肤损伤模型,考察pxis粘合剂在伤口封闭的作用。
[0054]
首先,将成年sd大鼠麻醉备皮,用手术剪在大鼠背部创伤出1cm长的伤口。将大鼠随机分为两组,一组采取传统的缝线缝合伤口,另一组直接涂抹pxis-1,随后进行光固化(光引发剂i2959,用量为衣康酸摩尔量的0.58%,固化条件:固化时间60s,光照波长365nm,光照功率200mw/cm-2
)。考察皮肤伤口封闭手术时间、失血情况和伤口后期修复情况。结果如表4、附图5和附图6所示,相比于缝合组,pxis粘合剂大大降低了手术时间,具有更加便捷的可操作性,同时还减少了封闭过程中的血液流失。更重要的是,由于粘合剂良好的组织相容性、对伤口无二次创伤以及能很好的贴合伤口面积,因此相比于缝线缝合,pxis粘合剂加快了皮肤伤口的修复,缩短了伤口修复的时间。
[0055]
表4 pxis粘合剂与缝合处理皮肤伤口指标
[0056][0057]
本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献