一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

覆膜支架的制作方法

2022-06-05 15:41:04 来源:中国专利 TAG:


1.本发明涉及介入式医疗器械领域,特别是涉及一种覆膜支架。


背景技术:

2.本部分提供的仅仅是与本公开相关的背景信息,其并不必然是现有技术。
3.动脉瘤和动脉夹层是临床上常见的血管疾病,如果不加医学干预,动脉瘤具有破裂的风险,对患者的生命造成极大的威胁。
4.随着现在医学技术的不断发展,利用微创手术将覆膜支架植入体内,治疗动脉瘤及动脉夹层的治疗手术被使用,因其创伤小,恢复快,得到了广泛应用。此治疗方式是将覆膜支架压缩入输送装置中,沿着事先植入的导丝轨道引导进入人体,到达病变位置后,将覆膜支架释放出来隔绝病变,重建血流通道,动脉瘤和动脉夹层在丧失血流供应后,瘤腔内残存血液逐渐血栓并肌化成血管组织,扩张状态的瘤壁因受压而收缩,逐渐恢复接近原始状态,从而达到治疗动脉瘤和动脉夹层的目的。
5.当动脉瘤或动脉夹层的发生部位靠近分支血管时,植入覆膜支架后可能遮挡分支血管的开口,从而导致分支血管的血流受阻。现有技术解决该问题的方法之一是在覆膜支架上设有凹槽结构,植入后,凹槽结构对应分支血管,凹槽结构上开设有窗口,以允许血流通过,保证分支血管的血流供应。然而,现有的设有凹槽结构的覆膜支架植入血管中后,分支部位的动脉会挤压凹槽结构,导致凹槽结构的体积变小,凹槽结构处的覆膜(即凹槽的底面)贴合分支血管的开口,导致分支血管的血流受阻,从而起不到凹槽结构的应发挥的作用。或者,由于挤压作用,导致凹槽结构上的窗口与分支血管开口的距离太近,不利于后续重建分支血管血运的操作,比如建立输送轨道时,导丝导入窗口的操作,后续分支支架输送器导入开窗的操作等。


技术实现要素:

6.基于此,有必要提供一种能够避免或减缓凹槽的底面贴合分支血管的开口的覆膜支架。
7.一种覆膜支架,包括第一支架、第二支架和覆膜,所述覆膜包覆于所述第一支架上形成中部具有凹槽的管腔结构,所述第二支架至少部分收容于所述凹槽中,且所述第一支架的纵向中心轴线和所述第二支架的纵向中心轴线平行或大致平行。
8.在其中一个实施例中,所述第一支架包括多个第一波圈和至少一个第二波圈,所述多个第一波圈位于所述第一支架的两端,所述第二波圈位于所述第一支架的中部,且所述第二波圈与所述凹槽径向相对。
9.在其中一个实施例中,所述第二波圈为具有波峰和波谷的闭环结构或具有波峰和波谷的开环结构。
10.在其中一个实施例中,当所述第二波圈为具有波峰和波谷的闭环结构时,所述第二波圈包括第一非闭合波圈和第一闭合部,所述第一非闭合波圈为具有波峰和波谷的开环
波圈,所述开环波圈具有两个自由端,所述第一闭合部包括直杆,所述直杆的两端分别与所述两个自由端直接或间接相连;
11.当所述第二波圈为具有波峰和波谷的开环结构时,所述第二波圈为具有波峰和波谷的开环波圈,所述开环波圈具有两个自由端,所述两个自由端为钝化结构。
12.在其中一个实施例中,所述第二支架包括至少一个第三波圈,所述第三波圈为具有波峰和波谷的闭环结构或具有波峰和波谷的开环结构。
13.在其中一个实施例中,所述第三波圈为多个,多个所述第三波圈沿轴向间隔排列或沿轴向非间隔排列。
14.在其中一个实施例中,当所述第三波圈为具有波峰和波谷的闭环结构时,所述第三波圈包括第二非闭合波圈和第二闭合部,所述第二非闭合波圈为具有波峰和波谷的开环波圈,所述开环波圈具有两个自由端,所述第二闭合部包括直线连接杆,所述直线连接杆的两端分别与所述两个自由端直接或间接相连;
15.当所述第三波圈为具有波峰和波谷的开环结构时,所述第三波圈为具有波峰和波谷的开环波圈,所述开环波圈具有两个自由端,所述两个自由端为钝化结构。
16.在其中一个实施例中,所述凹槽包括底面和围绕所述底面的侧面,所述第三波圈至少部分收容于所述凹槽中,且所述第三波圈与所述底面不固定连接。
17.在其中一个实施例中,所述第二支架为由编织丝编织形成的一体式支架或为由切割形成的一体式支架。
18.在其中一个实施例中,所述第二支架的一侧开设有第一窗口。
19.在其中一个实施例中,所述凹槽包括底面和围绕所述底面的侧面,所述第二支架的靠近所述底面的一侧开设有第一窗口,所述第二支架还开设有第二窗口,所述第一窗口和所述第二窗口在径向上相对。
20.在其中一个实施例中,所述凹槽包括底面和围绕所述底面的侧面,所述底面和侧面中的至少一个开设有通孔。
21.在其中一个实施例中,所述第一支架的径向支撑强度为p1,所述第二支架的径向支撑强度为p2,所述p1和p2满足:1/2《(p2/p1)《1;或者,所述p1和p2满足:1≤(p2/p1)≤2。
22.上述覆膜支架的第二支架至少部分收容于凹槽中,当覆膜支架顺应血管的弯曲而弯曲时,由于第二支架的径向挤压作用,凹槽的底面向分支血管靠近的趋势被阻挡或限制,从而能够避免或减缓凹槽的底面贴合分支血管的开口。
附图说明
23.图1为一实施例的覆膜支架的结构示意图;
24.图2为图1所示的覆膜支架的等轴测试图;
25.图3为一实施例的第二波圈的侧视图;
26.图4为另一实施例的第二波圈的正视图;
27.图5为图4所示的第二波圈的侧视图;
28.图6为图4所示的第二波圈的俯视图;
29.图7为另一实施例的第二波圈的正视图;
30.图8为图7所示的第二波圈的侧视图;
31.图9为图7所示的第二波圈的俯视图;
32.图10为一实施例的第三波圈的正视图;
33.图11为图10所示的第三波圈的俯视图;
34.图12为图10所示的第三波圈侧视图;
35.图13为另一实施例的第三波圈的正视图;
36.图14为一实施例的覆膜支架的侧视图;
37.图15为一实施例的第二支架的结构示意图;
38.图16为另一实施例的第二支架的结构示意图;
39.图17为另一实施例的覆膜支架的结构示意图;
40.图18为一实施例的第三波圈的仰视图;
41.图19为一实施例的第三波圈的仰视图;
42.图20为另一实施例的覆膜支架的等轴测试图;
43.图21为另一实施例的覆膜支架的等轴测试图;
44.图22为另一实施例的覆膜支架的等轴测试图;
45.图23为图1所示的覆膜支架植入血管中的状态示意图;
46.图24为在图23所示的状态植入分支支架的状态示意图。
具体实施方式
47.为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
48.除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
49.在本文中,定义“近端”为靠近心脏的一端,定义“远端”为远离心脏的一端。“轴向”指平行于医疗器械远端中心和近端中心连线的方向,“径向”指垂直于上述轴向的方向。
50.请参阅图1,一实施例的覆膜支架100,包括第一支架110、第二支架120和覆膜130,其中,覆膜130包覆于第一支架110上形成两端开口且中间具有凹槽140的管腔结构,如图2所示。管腔结构具有与两个开口端连通的内腔,以供血流通过。凹槽140具有底面140a和围绕底面140a的侧面。在一实施例中,侧面分别为侧面140b、侧面140c、侧面140d和侧面140e。其中,侧面140b和侧面140e在轴向上相对,侧面140c和侧面140d在径向上相对。在不受力的状态下,底面140a为平面或曲面,曲面可以为相对凹槽140的开口下凹的凹面、相对凹槽140的开口向上凸起的凸面或同时具有凹陷部和凸起部的曲面。第二支架120至少部分收容于凹槽140中,且第一支架110的纵向中心轴线i-i和第二支架120的纵向中心轴线ii-ii平行或大致平行。其中,大致平行时是指纵向中心轴线i-i和纵向中心轴线ii-ii的角度大于0
°
但小于10
°

51.其中,第一支架110和第二支架120采用具有良好生物相容性和良好弹性的材料制成,例如,镍钛合金、不锈钢等。覆膜130采用良好生物相容性的薄膜材料制成,例如,pet、
ptfe等。覆膜130和第一支架110的结合或固定方式不限,例如,可以采用高温加压方式,也可以采用缝合固定方式。覆膜130的可以为单层结构,也可以多层结构。
52.在一实施例中,第二支架120完全收容于凹槽140中,并且,第二支架120的远离凹槽140的底面140a的外表面与第一支架110的外表面平齐,如图1所示,即第二支架120和第一支架110在凹槽140的开口方向的切面共面(该切面与纵向中心轴线i-i和纵向中心轴线ii-ii平行),整个覆膜支架100具有均一的外径。或者,第二支架120的远离凹槽140的底面140a的外表面低于凹槽140开口端,即第二支架120的外径小于凹槽140的深度。在一实施例中,第二支架120的外径与凹槽140的深度的差值(或第二支架120的与纵向中心轴线ii-ii平行的切面与凹槽140的开口端的端面的距离)不超过第二支架120的外径的25%,以避免需要使用深度过大的凹槽140而使凹槽140对主体血管形成遮挡而影响主体血管的血流。在另一实施例中,第二支架120部分收容于凹槽140中,即第二支架120有部分凸出于凹槽140外。凸出部分的高度与凹槽140的开口端的端面的距离不超过第二支架120的外径10%,以避免影响覆膜支架100的第一支架110与主体血管的锚定。或者,避免第二支架120过度挤压血管壁而造成血管壁损伤。
53.第一支架110具有轴向相对的第一端110a和第二端110b。第一支架110包括多个第一波圈112和至少一个第二波圈114。多个第一波圈112位于第一支架110的第一端110a和第二端110b。至少一个第二波圈114位于两端的第一波圈112之间,且与凹槽140在径向上相对。即,第二波圈114位于第一支架110的中部。
54.在一实施例中,第一波圈112为z型波圈结构。z型波圈结构为由多个第一波杆(图未标)首尾相连形成的具有波峰和波谷的闭环结构。位于第一端110a的第一波圈112至少为一个,位于第二端110b的第一波圈112至少为一个。在一实施例中,位于第一端110a的第一波圈112为两个或多个,位于第二端110b的第一波圈112为两个或多个。当两端的第一波圈112的数量大于或等于2时,每一端的大于或等于2个第一波圈112沿轴向(纵向中心轴线i-i的延伸方向)间隔排列。并且,每一端的大于或等于2个第一波圈112之间通过轴向连接件(图未示)连接或多个第一波圈112之间无任何连接件,通过覆膜130连在一起。在其他实施例中,位于第一端110a的第一波圈112的数量和位于第二端110b的第一波圈112的数量可以相等,也可以不等。
55.需要说明的是,位于第二波圈114两侧的多个第一波圈112之间,波形、波高、波数等可以相同,也可以不同。位于第二波圈114的两侧的第一波圈112的数量可以相等,也可以不等。
56.第二波圈114的径向尺寸(径向方向距离最大的两点的距离,下同。例如直径)小于第一波圈112的径向尺寸(例如,直径),使得当覆膜130包覆于第一支架110上后形成两端开口且中间具有凹槽140的管腔结构。
57.在一实施例中,第二波圈114为由多个第二波杆(图未标)首尾相连形成的具有波峰和波谷的闭环结构,如图3所示,但第二波圈114的直径小于第一波圈112的直径。第二波圈114与凹槽140的底面140a相对,并径向支撑覆膜130位于底面140a的区域。第二波圈114与覆膜130的位于底面140a的区域固定连接。或者,第二波圈114与覆膜130的位于侧面140b、侧面140c、侧面140d和侧面140e的部位中的至少一个固定连接,但不与覆膜130的位于底面140a的部位连接。连接的方式包括但不限于采用胶粘、缝合等方式将两者直接固定
连接。或者,采用连接件间接连接第二波圈114和覆膜130。
58.在一实施例中,如图4所示,第二波圈114为闭环结构,包括第一非闭合波圈1142和第一闭合部1144。请一并参阅图5和图6,第一非闭合波圈1142为由多个波杆(图未标)首尾相连且端部不相连的具有波峰和波谷的非闭合结构。在一实施例中,当凹槽140的底面140a为平面时,第一非闭合波圈1142为1/2~3/4个圆周结构。当凹槽140的底面140a为凹面时,第一非闭合波圈1142为5/9~8/9个圆周。当凹槽140的底面140a为凹面时,一非闭合波圈1142为1/4~5/9个圆周。第一闭合部1144的两端分别与第一非闭合波圈1142的两个自由端相连从而形成闭环结构。第一闭合部1144为杆件结构,包括直杆1144a。直杆1144a与底面140a相对。这种结构的第二波圈114的直杆1144a具有平面区域,能够与凹槽140的底面140a较好地匹配,以较好地径向支撑覆膜130位于底面140a的区域,有利于维持凹槽140的底面140a为平面或大致为平面,从而有利于维持凹槽140的形状,避免凹槽140变形而导致覆膜130的位于凹槽140的区域贴合分支血管的开口,从而避免分支血管的血流受阻的现象发生。
59.第二波圈114通过直杆1144a与覆膜130位于底面140a的区域固定连接。也可以通过其他部位与覆膜130的内表面固定连接,而直杆1144a不与覆膜130位于底面140a的区域固定连接,即凹槽140仅仅搭接在第二波圈114的直杆1144a上,并未使用胶粘、缝合等方式固定。
60.在一实施例中,第一闭合部1144还包括分别与直杆1144a的两端相连的两个弧形杆1144b,两个弧形杆1144b的远离直杆1144a的一端分别与第一非闭合波圈1142的两个自由端相连。设置弧形杆1144b,以形成过渡,避免应力集中,从而避免第一闭合部1144与第一非闭合波圈1142的连接部位断裂的风险。
61.在一实施例中,省略第一闭合部1144,即第二波圈114仅包括第一非闭合波圈1142,使得第二波圈114为非闭环结构,如图7所示。第二波圈114的两个自由端为钝化结构,以避免刺破覆膜130。在一实施例中,如图8和图9所示,第二波圈114的两个自由端分别向腔内方向或腔外方向卷曲而形成两个钝化结构1143。在另一实施例中,钝化结构可以为其他方式,例如可以为通过焊接或其他固定方式固定于第二波圈114的自由端的球状结构。
62.请回到图1,在一实施例中,第二支架120包括至少一个第三波圈122。在一实施例中,第三波圈122的数量为多个,多个第三波圈122沿纵向中心轴线ii-ii间隔地设置于凹槽140中。在另一实施例中,多个第三波圈122沿纵向中心轴线ii-ii非间隔地设置于凹槽140中。
63.请参阅图10,在一实施例中,第三波圈122为闭环结构。第三波圈122包括第二非闭合波圈1222和第二闭合部1224。请一并参阅图11,第二非闭合波圈1222为由多个波杆1222a首尾相连且端部不相连的非闭环结构,使得第二非闭合波圈1222具有两个自由端。在一实施例中,当凹槽140的底面140a为平面时,第二非闭合波圈1222为1/2~3/4个圆周结构。当凹槽140的底面140a为凹面时,第一非闭合波圈1142为5/9~8/9个圆周。当凹槽140的底面140a为凹面时,一非闭合波圈1142为1/4~5/9个圆周。第二闭合部1224包括直线连接杆1224a和分别与直线连接杆1224a的两端相连的两个弧形过渡杆1224b。两个弧形过渡杆1224b的两端分别与第二非闭合波圈1222的两个自由端相连,从而形成闭环的第三波圈122。
64.第三波圈122收容于凹槽140中,且第三波圈122的第二闭合部1224设置于凹槽140的底面140a上。更具体地,第二闭合部1224的直线连接杆1224a设置于凹槽140的底面140a上,第二非闭合波圈1222的弧度与第一支架110的第一波圈112的弧度相匹配,使得覆膜支架10的轮廓为中空的圆柱结构或大致为中空的圆柱结构。
65.因此,第三波圈122包括第二非闭合波圈1222和第二闭合部1224,不仅能与凹槽140的形状相匹配,也可以和第一波圈112的弧度相匹配,从而为凹槽140提供较好的径向支撑,且使覆膜支架100的外部轮廓能够平滑过渡,以使覆膜支架100的轮廓为中空的圆柱结构或大致为中空的圆柱结构,以方便输送和释放。
66.在一实施例中,第三波圈122通过波杆1222a固定于侧面140d上,实现第三波圈122固定于凹槽140中。在一实施例中,如图12所示,第三波圈122处于位于凹槽140中时的位置状态,第三波圈122的波杆1222a与侧面140d的边缘线固定相连,第三波圈112的另一波杆1222a与侧面140c的边缘线固定相连。
67.在一实施例中,请参阅图13,第三波圈122的结构省略直线连接杆1224a,即第三波圈122包括第二非闭合波圈1222及分别与第二非闭合波圈1222的两个自由端相连的两个弧形过渡杆1224b,使得第三波圈122具有开口,为非闭环结构。通过第三波圈122的波杆1222a与侧面140d及侧面140c的边缘线固定相连使第三波圈122固定于凹槽140中。或者,通过第三波圈122的波杆1222a与侧面140d和侧面140c相连使第三波圈122固定于凹槽140中,但连接部位不一定位于侧面140d和侧面140c的边缘线上。
68.省略直线连接杆1224a有利于减少金属用量。并且,当受到朝向凹槽140的底面140a的径向力作用时,第三波圈122的第二非闭合波圈1222可以挤压凹槽140的底面140a,防止凹槽140d的底面140a贴合分支血管的开口部位。
69.每个弧形过渡杆1224b的自由端为钝化结构,以避免损伤覆膜130。钝化结构的形式不限,例如,钝化结构可以与第二波圈114的钝化结构相同。此处不再赘述。
70.在另一实施例中,请参阅图14,第三波圈122为由多个波杆首尾相连形成的具有波峰和波谷的闭环结构,即第三波圈112为圆筒状波圈。圆筒状的第三波圈122与凹槽140的底面140a的接触面积较小,有利于后续开窗操作。
71.在一实施方式中,圆筒状的第三波圈122通过径向上相对的波杆与凹槽140的侧面140c和侧面140d固定连接,第三波圈122的底部与凹槽140的底面140a不相连。
72.需要说明的是,当第三波圈122的数量为多个时,多个第三波圈122沿轴向(纵向中心轴线ii-ii的延伸方向)间隔排列。相邻的第三波圈122之间可以通过轴向连接件(图未示)相连,可以不相连。设置轴向连接件可以稳定第三波圈122释放的位置。
73.当相邻的第三波圈122之间通过轴向连接件相连时,轴向连接件可以刚性连接件,也可以为柔性连接件。
74.刚性连接件的形式不限,可以为金属材料制成的直杆、异形杆等。请参阅图15,在一实施例中,采用轴向连接件124连接相连的第三波圈122。轴向连接件124为直杆状的刚性连接件。并且,当覆膜支架100弯曲时,形成大弯侧和小弯侧,轴向连接件124位于大弯侧,以免影响覆膜支架100弯曲。在一实施例中,轴向连接件124的数量不超过2个。在一实施例中,轴向连接件124的数量为1个,即仅使用一个轴向连接件124连接相邻的两个第三波圈122。
75.请参阅图16,在一实施例中,轴向连接件124为柔性连接件。柔性连接件的位置不
限,数量也不限。在实施例中,柔性连接件的数量为3个,并且,三个柔性连接件位于第二支架120的远离凹槽140的底面140a的一侧。
76.在另一实施例中,请参阅图17,第二支架120为一个整体的金属骨架。例如,第二支架120为由金属丝编织形成的管腔网状结构,或为切割金属管形成的管腔网状结构。或者,第二支架120包括多个非间隔排列的第三波圈122(图17未示),相邻的两个第三波圈122的波峰和波谷轴向相对且相连,使得每个第三波圈122的波峰和波谷不再是具有自由端的状态。这种结构的第二支架120为一体式结构,能够避免因单个波圈的波峰和/或波谷的自由端而容易顶入分支血管内的现象,从而避免了单个波圈对分支血管造成损伤,提高了使用的安全性。
77.在一实施例中,第二支架120的底部与凹槽140的底面140a相连。在另一实施例中,第二支架120的侧面与凹槽140的侧面140c及侧面140d相连。
78.在另一实施例中,如图17所示,第二支架120通过轴向连接杆150与覆膜130或第一波圈112相连。轴向连接杆150的一端与第二支架120的第一端,另一端轴向延伸至凹槽140外,并与覆膜130或第一波圈112相连。
79.轴向连接杆150至少为两个。当轴向连接杆150为两个时,两个轴向连接杆150位于第二支架120的轴向相对的两端,且两个轴向连接杆150均位于凹槽140的开口端。每个轴向连接杆150的一端与第二支架120相连,另一端从凹槽140的开口端轴向延伸至凹槽140a外,并与覆膜130或第一波圈112相连。
80.并且,第二支架120的底部(靠近凹槽140的底面140a的部位)与凹槽140的底面140a不固定连接,以方便调整第二支架120的底部与凹槽140的底面140a相对位置,从而方便在后续开窗和植入分支支架的操作。
81.轴向连接杆150的形式不限。例如,可以为直杆、异形杆等。
82.可以理解,在第二支架120为整体的金属骨架的实施例中,第二支架120的横截面的形状不限。例如,可以为图10所示的包括第二非闭合波圈1222、直线连接杆1224a和弧形过渡杆1224b的结构,也可以为图13所示的包括第二非闭合波圈1222和弧形过渡杆1224b,但省略直线连接杆1224a的结构。还可以为图14所示的圆筒状结构。此处不再详细赘述。
83.请参阅图18,在另一实施例中,第二支架120的底部开设(靠近凹槽140的底面140a的部位)开设有第一窗口124。第一窗口124位于第二支架120的中部区域。由于窗口124部分没有金属骨架的阻挡或干扰,使得后续的开窗和植入分支支架的操作更为容易。并且,有利于减少金属的使用量,同时由于减小压缩后的第二支架120的径向尺寸,从而减少压缩后的覆膜支架100的径向尺寸,以便可以使用较小规格的输送鞘管进行输送,对患者的损伤较小,或者适用于更多的患者。
84.请参阅图19,在另一实施例中,第二支架120的与第一窗口124径向相对的部位还开设有第二窗口126,第一窗口124和第二窗口126相对,即第二支架120的中部区域为无金属骨架。如此,通过第二窗口124和第二窗口126边缘的金属骨架进行支撑,使得当覆膜支架100植入血管中后,金属骨架挤压凹槽140的底面140a,以避免凹槽140的底面140a朝向靠近分支血管开口的方向位移而贴合分支开口部位。并且,在保障支撑作用的同时,更方便后续的开窗和植入分支支架的操作。并且,金属的使用量更小,压缩后的覆膜支架100的径向尺寸更小,以便可以使用更小规格的输送鞘管进行输送,对患者的损伤更小,或者适用于更多
的患者。
85.在另外的实施例中,当省略第二窗口126时,第一窗口124的位置开设在第二支架120的底部,也可以在第二支架120的与底部相对的一侧(即第二支架120的顶部)开设第一窗口124。
86.在一实施例中,凹槽140上开设有贯通凹槽140的侧面的通孔,以供血流通过。在一实施例中,凹槽140的底面140a、侧面140b、侧面140c、侧面140d和侧面140e中的至少一个开设有通孔。具体的,请参阅图20,在一实施例中,凹槽140上开设有贯通侧面140b的第一通孔142。血流可以从主体血管经第一通孔142流向各分支血管,当病变没有累计到分支动脉根部时,后续无需再植入分支支架,对于患者来说更经济。
87.当第一窗口124开设于第二支架120的顶部时,第一通孔142和第一窗口124可以作为分支支架的通道,分支支架从第一通孔142进入第二支架120中,并从第一窗口124伸出第二支架120。
88.请参阅图21,在一实施例中,凹槽140上开设有贯通侧面140e的第二通孔144,亦可以实现血流可以从主体血管经第二通孔144流向各分支血管,当病变没有累计到分支动脉根部时,后续无需再植入分支支架。
89.需要说明的是,第一通孔142和第二通孔144可以同时存在,也可以是第一通孔142和第二通孔144中的一个择一存在。
90.请参阅图22,在一实施例中,凹槽140上开设有贯通底面140a的第三通孔146,亦可以实现血流可以从主体血管经第三通孔146流向各分支血管,当病变没有累计到分支动脉根部时,后续无需再植入分支支架。或者,当设有第三通孔146时,在后续的植入分支支架时,无需再在底面140a上进行原位开窗操作,而是直接通过第三通孔146送入分支支架。
91.需要说明的是,当开设有第三通孔146时,第一通孔142和第二通孔144中的至少一个可以省略,也可以都保留。
92.还需要说明的是,第一通孔142、第二通孔144和第三通孔146的形状和数量不限,只要满足血流能够通过,且不会对凹槽140的整体结构产生不良影响即可。
93.在一实施例中,第一通孔142、第二通孔144和第三通孔146均为圆形孔,并且,第一通孔142和第二通孔144的数量均为一个,第三通孔146的数量为3个。
94.以下以图1所示的实施例说明覆膜支架100的使用方法。如图23所示,病变血管1为主动脉弓部血管,弓部的与分支血管相对的一侧发生动脉夹层2。当将覆膜支架100植入病变血管1中后,凹槽140对应分支血管部位。具体地,三个分支血管101均与凹槽140在径向上相对。当覆膜支架100植入病变血管1中后,覆膜支架100顺应病变血管1自身的弯曲而弯曲,弯曲过程中,凹槽140所在部位一并弯曲,导致凹槽140的底面140a(图23未示)具有向靠近分支血管101的方向凸出的趋势,但由于第二支架120自身的径向支撑性能,能够给凹槽140的底面140a提供反向的支撑力,以限制凹槽140的底面140向靠近分支血管101的方向凸出的趋势,从而使得凹槽140的底部140a能够远离分支血管101的开口,从而避免覆膜130遮挡分支血管101的开口。请一并参阅图24,接着,采用原位开窗技术,开设贯穿凹槽140的底面140a(图23未示)的窗口,将分支支架200从该开窗中送入分支血管101中并释放分支支架200,建立分支血管101与病变血管1的血流通道。
95.由于第二支架120的径向支撑作用,能够较好地保持凹槽140的形状,使得凹槽140
的底面140a与分支血管200的开口保持足够的距离,以方便原位开窗及植入分支支架200。
96.并且,由于第二支架120的底部与凹槽140的底面140a不是固定连接的,使得在原位开窗及植入分支支架200的过程中,可以根据需要,调整第三波圈122的位置,使得操作更为方便,有利于提高位置准确性及缩短手术时间。同时,当分支支架200释放完成后,第三波圈122固定在分支支架200周围,形成稳定支撑,维持分支支架200位置的稳定,以保持分支血管持续畅通。
97.需要说明的是,上文分别介绍了不同实施例的第二波圈114和不同实施例的第三波圈122,不同实施例的第二波圈114和不同实施例第三波圈122可以任意组合。
98.例如,图7所示的第二波圈114可以与图10所示的第三波圈122组合,通过第三波圈的直线连接杆1224a与凹槽140的底面140a较为匹配,可以较好地挤压凹槽140的底面140a,防止底面140a贴合分支血管的开口。并且,第二波圈114为开口结构,有利于减少金属用量和降低压缩后覆膜支架100的径向尺寸。
99.又如,图4所示的第二波圈114可以与图10所示的第三波圈122组合,使得第二波圈114的直杆1144a与第三波圈122的直线连接杆1224a相对,相互配合。
100.又如,图7所示的第二波圈114可以与图13所示的第三波圈122组合,第三波圈122通过第二非闭合波圈1222对凹槽140施加径向支撑力。这种组合,使用的金属量较小。
101.又如,图7所示的第二波圈114可以与图14所示的第三波圈122组合,第三波圈122通过第二非闭合波圈1222对凹槽140施加径向支撑力。
102.又如,图7所示的第二波圈114可以与图17所示的第二支架120组合,通过第二支架120对凹槽140提供径向支撑力,并且这种结构的第二支架120能够避免端部为自由端的第三波圈122能够避免损伤分支血管内壁的风险。
103.又如,图7所示的第二波圈114可以与图18或图19所示的第三波圈122组合。
104.又如,实施例4所示的第二波圈114可以与图13所示的第三波圈122组合,通过第二波圈114的直杆1144a挤压凹槽140的底面140a,同时减少金属的使用量即减少压缩后的覆膜支架100的径向尺寸。
105.其他的组合方式不再一一赘述。
106.无论不同的结构的第二波圈114和不同结构的第三波圈122如何组合,在一实施例中,第一支架110的径向支撑强度p1和第二支架120的径向支撑强度p2不等。
107.在一实施例中,p1和p2满足:1/2《(p2/p1)《1,即第二支架120的径向支撑强度p2小于第一支架110的径向支撑强度p1,但p2应足够大,大于p1的0.5倍,使得当第一支架110和第二支架120受到大小相等的径向压缩力时,第二支架120被径向压缩后的径向尺寸的减少量不至于过大,以方便进行开窗的操作。
108.在一实施例中,p1和p2满足:1≤(p2/p1)≤2,即第二支架120的径向支撑强度p2大于或等于第一支架110的径向支撑强度p1,且p2小于p1的2倍,使得当第一支架110和第二支架120受到大小相等的径向压缩力时,第一支架110被径向压缩后的径向尺寸的减少量不至于过大,以保持流经第一支架110的血流畅通。
109.需要说明的是,径向支撑强度等于径向支撑力与轴向长度的比值。例如,当第二支架120所受到的径向支撑力为f2,第二支架120的轴向长度为l2,则p2=f2/l2。当第一支架110所受到的径向支撑力为f1,第一支架110的轴向长度为l1,则p1=f1/l1。其中,l1为第一
支架110的与第二支架120径向相对部分的轴向长度,l1=l2。
110.还需要说明的是,可以采用平板压缩法测试第一支架110的径向支撑力f1和第二支架120的径向支撑力f2。或者,采用径向压缩法测试第一支架110的径向支撑力f1和第二支架120的径向支撑力f2。即,当要比较f1和f2的大小时,采用相同的测试方法、在相同的条件下测试f1和f2。例如,分别采用径向压缩法测试第一支架110被压缩50%时受到的径向支撑力f1的大小及第二支架120被压缩50%时受到的径向支撑力f2的大小。当采用平板压缩法时,将两个平板分别压缩支架的两侧,两个平板平行,且两个平板以纵向中心轴线的对称轴对称设置。并且,两个平板分别为支架的的两个切平面。
111.第一支架110的径向支撑力f1与第二波圈114的杆径、波数、波谷或波峰处的夹角等参数有关,第二支架120的径向支撑力f2与第三波圈122的的杆径、波数、波谷或波峰处的夹角等参数有关,本领域技术人员可以根据需要调整。
112.请再次回到图1,在一实施例中,覆膜支架100还包括锚定支架160,锚定支架160位于第一支架110的第一端110a,并与第一波圈112相连或与覆膜130相连。锚定支架160为裸支架,不包括任何覆膜。锚定支架160包括至少一个锚定波圈162。当锚定波圈162的数量为多个时,多个锚定波圈162沿纵向中心轴线i-i间隔排列。
113.当将覆膜支架100植入血管中时,锚定支架160位于覆膜支架100的近端。设置锚定支架160以进一步提高覆膜支架100端部的锚定性能。
114.在一实施例中,位于第一端110a的第一波圈110为一个,并且,当凹槽140仅与两个分支血管101(靠近第二端110b的两个分支血管101)在径向上相对时,通过一个第一波圈110和锚定支架160配合,实现覆膜支架100近端的锚定,并且,由于锚定支架160为裸支架,不会完全遮挡第三个分支血管101的开口,无需再进行开窗和植入分支支架200的操作。
115.在一实施例中,锚定波圈162的波杆长度小于第一波圈162的波杆长度,并且锚定波圈162的波数大于第一波圈162的波数,使得锚定支架160的锚定性能较好。
116.以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
117.以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献