一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

涡旋压缩机的制作方法

2022-07-17 01:47:50 来源:中国专利 TAG:


1.本发明涉及一种用于空调装置等的涡旋压缩机。


背景技术:

2.在专利文献1(日本特开2018-35749号公报)中公开了一种可动涡旋件被按压于固定涡旋件的涡旋压缩机。


技术实现要素:

3.发明要解决的课题
4.在回转过程中的可动涡旋件相对于固定涡旋件倾斜的情况下,在一方的涡旋件的涡旋齿的末端面的一部分与另一方的涡旋件的对应的表面之间作用有表面压力。由此,存在如下情况:涡旋件磨损而成为制冷剂气体从压缩机泄漏的原因,压缩机的效率降低。本发明的目的在于提供一种涡旋压缩机,其能够抑制由涡旋件的磨损引起的效率降低。
5.用于解决课题的手段
6.第一观点的涡旋压缩机具备:固定涡旋件,其具有固定侧端板和固定侧涡旋齿;以及可动涡旋件,其具有可动侧端板和可动侧涡旋齿。固定侧涡旋齿从固定侧端板的主表面起以具有规定的固定侧尺寸的方式沿着第一方向延伸。可动侧涡旋齿从可动侧端板的与固定侧端板的主表面对置的主表面起以具有规定的可动侧尺寸的方式沿着第一方向延伸。固定涡旋件和可动涡旋件形成由固定侧涡旋齿的内周面和可动侧涡旋齿的外周面包围的第一压缩室及由固定侧涡旋齿的外周面和可动侧涡旋齿的内周面包围的第二压缩室。固定侧尺寸和可动侧尺寸被设定为,在可动涡旋件相对于固定涡旋件倾斜时,固定侧涡旋齿的末端面所包含的固定侧第一区域承受可动涡旋件被按压于固定涡旋件的力。固定侧第一区域包括从位于固定侧涡旋齿的最外周的规定的固定侧基准点起0.0周~0.5周的部分的末端面、以及1.0周~1.5周的部分的末端面。
7.在第一观点的涡旋压缩机中,通过充分确保表面压力所作用的涡旋齿的末端面的区域,从而抑制涡旋件的磨损,抑制压缩机的效率的降低。
8.第二观点的涡旋压缩机在第一观点的涡旋压缩机中,在沿着第一方向观察时,第一压缩室和第二压缩室形成为点对称。固定侧尺寸和可动侧尺寸进一步被设定为,在可动涡旋件相对于固定涡旋件倾斜时,可动侧涡旋齿的末端面所包含的可动侧第一区域承受可动涡旋件被按压于固定涡旋件的力。固定侧第一区域是从固定侧基准点起0.0周~0.5周的部分的末端面、以及1.0周~1.5周的部分的末端面。可动侧第一区域是从位于可动侧涡旋齿的最外周的规定的可动侧基准点起0.0周~0.5周的部分的末端面、以及1.0周~1.5周的部分的末端面。
9.在第二观点的涡旋压缩机中,通过充分确保表面压力所作用的涡旋齿的末端面的区域,从而抑制涡旋件的磨损,抑制压缩机的效率的降低。
10.第三观点的涡旋压缩机在第二观点的涡旋压缩机中,固定侧尺寸和可动侧尺寸进
一步被设定为,在固定涡旋件和可动涡旋件发生变形时,固定侧涡旋齿的末端面所包含的固定侧第二区域不承受可动涡旋件被按压于固定涡旋件的力,可动侧涡旋齿的末端面所包含的可动侧第二区域不承受可动涡旋件被按压于固定涡旋件的力。固定侧第二区域是从固定侧基准点起0.5周~1.0周的部分的末端面。可动侧第二区域是从可动侧基准点起0.5周~1.0周的部分的末端面。
11.在第三观点的涡旋压缩机中,通过将表面压力所作用的涡旋齿的末端面的区域限定在规定范围,从而抑制涡旋件的磨损,抑制压缩机的效率的降低。
12.第四观点的涡旋压缩机在第一观点的涡旋压缩机中,固定侧涡旋齿的卷绕数和可动侧涡旋齿的卷绕数互不相同。固定侧第一区域是从固定侧基准点起0.0周~2.0周的部分的末端面。
13.在第四观点的涡旋压缩机中,通过充分确保表面压力所作用的涡旋齿的末端面的区域,从而抑制涡旋件的磨损,抑制压缩机的效率的降低。
14.第五观点的涡旋压缩机在第四观点的涡旋压缩机中,固定侧尺寸和可动侧尺寸进一步被设定为,在固定涡旋件和可动涡旋件发生变形时,可动侧涡旋齿的末端面所包含的可动侧第二区域不承受可动涡旋件被按压于固定涡旋件的力。可动侧第二区域是从位于可动侧涡旋齿的最外周的规定的可动侧基准点起0.0周~1.0周的部分的末端面。
15.在第五观点的涡旋压缩机中,通过将表面压力所作用的涡旋齿的末端面的区域限定在规定范围,从而抑制涡旋件的磨损,抑制压缩机的效率的降低。
16.第六观点的涡旋压缩机在第三观点或第五观点的涡旋压缩机中,固定涡旋件和可动涡旋件的变形起因于第一压缩室及第二压缩室的压力和热的至少一方。
17.在第六观点的涡旋压缩机中,考虑涡旋件的变形,将表面压力所作用的涡旋齿的末端面的区域限定在规定范围,由此抑制压缩机的效率的降低。
18.第七观点的涡旋压缩机在第一至第六观点中的任意1个涡旋压缩机中,固定涡旋件和可动涡旋件在可动涡旋件回转的期间,在第一时刻形成第一压缩室和第二压缩室。固定侧基准点位于在第一时刻与可动侧涡旋齿的侧面接触的位置。可动侧基准点位于在第一时刻与固定侧涡旋齿的侧面接触的位置。
19.在第七观点的涡旋压缩机中,通过将表面压力所作用的涡旋齿的末端面的区域确保在最外周附近,从而抑制压缩机的效率的降低。
20.第八观点的涡旋压缩机在第一至第六观点中的任意1个涡旋压缩机中,固定侧涡旋齿具有在固定侧涡旋齿的最外周处形成于固定侧涡旋齿的末端面的固定侧台阶。可动侧涡旋齿具有在可动侧涡旋齿的最外周处形成于可动侧涡旋齿的末端面的可动侧台阶。固定侧基准点在固定侧涡旋齿的末端面延伸的方向上位于固定侧台阶。可动侧基准点在可动侧涡旋齿的末端面延伸的方向上位于可动侧台阶。
21.在第八观点的涡旋压缩机中,通过将表面压力所作用的涡旋齿的末端面的区域确保在最外周附近,从而抑制压缩机的效率的降低。
附图说明
22.图1是实施方式的涡旋压缩机100的纵剖视图。
23.图2是图1中的涡旋压缩机100的浮动部件30周边的放大图。
24.图3是图1的固定涡旋件21的平面图。
25.图4是图1的可动涡旋件22的平面图。
26.图5a是在拆除固定侧端板21a的情况下从上方观察图1的固定涡旋件21与可动涡旋件22啮合的状态的图。是示出形成有第一压缩室sc1及第二压缩室sc2的时刻的状态的图。是示出相位从图5d前进了90
°
的状态的图。
27.图5b是示出相位从图5a前进了90
°
的状态的图。
28.图5c是示出相位从图5b前进了90
°
的状态的图。
29.图5d是示出相位从图5c前进了90
°
的状态的图。
30.图6是实施方式的固定涡旋件21及可动涡旋件22的纵剖视图。
31.图7是实施方式的固定涡旋件21及可动涡旋件22的纵剖视图。
32.图8是实施方式的固定涡旋件21及可动涡旋件22的纵剖视图。
33.图9是实施方式的固定涡旋件21及可动涡旋件22的纵剖视图。
34.图10是变形例a的固定涡旋件21的平面图。
35.图11是变形例a的可动涡旋件22的平面图。
36.图12是变形例a的固定涡旋件21及可动涡旋件22的纵剖视图。
37.图13是变形例a的固定涡旋件21及可动涡旋件22的纵剖视图。
38.图14是变形例a的固定涡旋件21及可动涡旋件22的纵剖视图。
39.图15是变形例a的固定涡旋件21及可动涡旋件22的纵剖视图。
40.图16是变形例b的固定涡旋件21的平面图。
41.图17是变形例b的可动涡旋件22的平面图。
42.图18是变形例d的固定涡旋件21的平面图。
43.图19是变形例d的可动涡旋件22的平面图。
44.图20是从上方观察变形例d的固定涡旋件21与可动涡旋件22啮合的状态的图。
45.图21是变形例d的固定涡旋件21及可动涡旋件22的纵剖视图。
46.图22是变形例d的固定涡旋件21及可动涡旋件22的纵剖视图。
47.图23是变形例e的固定涡旋件21及可动涡旋件22的纵剖视图。
48.图24是变形例e的固定涡旋件21及可动涡旋件22的纵剖视图。
具体实施方式
49.参照附图对本发明的涡旋压缩机的实施方式进行说明。
50.(1)整体结构
51.涡旋压缩机100用于具备使用制冷剂的蒸汽压缩式的制冷循环的设备。涡旋压缩机100例如用于空调装置的室外机以及制冷装置。涡旋压缩机100构成制冷剂回路的一部分,所述制冷剂回路构成制冷循环。
52.涡旋压缩机100是全密闭型的压缩机。涡旋压缩机100是所谓的低压圆顶型涡旋压缩机。涡旋压缩机100吸入在制冷剂回路中流动的制冷剂,并将吸入的制冷剂压缩而排出。制冷剂例如为r32。
53.如图1所示,涡旋压缩机100主要具有外壳10、压缩机构20、浮动部件30、壳体40、密封部件60、马达70、驱动轴80以及下部轴承壳体90。在图1中,箭头u是指铅垂方向上侧。
54.(2)详细结构
55.(2-1)外壳10
56.外壳10具有纵长的圆筒形状。外壳10收纳压缩机构20、浮动部件30、壳体40、密封部件60、马达70、驱动轴80以及下部轴承壳体90等构成涡旋压缩机100的部件。
57.在外壳10的上部配置有压缩机构20。在压缩机构20的下方配置有浮动部件30以及壳体40。在壳体40的下方配置有马达70。在马达70的下方配置有下部轴承壳体90。在外壳10的底部形成有存油空间11。在存油空间11中积存有用于对压缩机构20等进行润滑的冷冻机油。
58.外壳10的内部空间被分隔板16分隔为第一空间s1和第二空间s2。第一空间s1是比分隔板16靠下侧的空间。第二空间s2是比分隔板16靠上侧的空间。分隔板16以在第一空间s1与第二空间s2之间保持气密的方式固定于压缩机构20以及外壳10。
59.分隔板16是在俯视观察时形成为环状的板状的部件。分隔板16的内周侧在整周固定于压缩机构20的固定涡旋件21的上部。分隔板16的外周侧在整周固定于外壳10的内表面。
60.第一空间s1是配置马达70的空间。第一空间s1是供被涡旋压缩机100压缩前的制冷剂从具有涡旋压缩机100的制冷剂回路流入的空间。第一空间s1是供制冷循环中的低压的制冷剂流入的空间。
61.第二空间s2是供从压缩机构20排出的制冷剂(被压缩机构20压缩后的制冷剂)流入的空间。第二空间s2是供制冷循环中的高压制冷剂流入的空间。
62.吸入管13、排出管14以及注入管15以将外壳10的内部与外部连通的方式安装于外壳10。
63.吸入管13安装于外壳10的上下方向(铅垂方向)上的中央附近。具体而言,吸入管13安装于壳体40与马达70之间的高度位置处。吸入管13将外壳10的外部与外壳10的内部的第一空间s1连通。压缩前的制冷剂(制冷循环中的低压的制冷剂)通过吸入管13流入第一空间s1。
64.排出管14安装于外壳10的上部且比分隔板16靠上方的高度位置处。排出管14将外壳10的外部与外壳10的内部的第二空间s2连通。被压缩机构20压缩而流入第二空间s2的制冷剂(制冷循环中的高压制冷剂)通过排出管14流出到涡旋压缩机100的外部。
65.注入管15安装于外壳10的上部且比分隔板16靠下方的高度位置处。注入管15以贯通外壳10的方式安装。如图1所示,注入管15的外壳10内部侧的端部与压缩机构20的固定涡旋件21连接。注入管15经由形成于固定涡旋件21的未图示的通路而与压缩机构20内部的压缩中途的压缩室sc连通。中间压的制冷剂(制冷循环中的低压和高压的中间的压力的制冷剂)从具有涡旋压缩机100的制冷剂回路通过注入管15被供给到压缩中途的压缩室sc。
66.(2-2)压缩机构20
67.压缩机构20主要具有固定涡旋件21和可动涡旋件22。固定涡旋件21和可动涡旋件22相互组合而形成压缩室sc。压缩机构20在压缩室sc中对制冷剂进行压缩,排出压缩后的制冷剂。压缩机构20如后述那样具有对称涡旋齿结构。
68.(2-2-1)固定涡旋件21
69.如图1所示,固定涡旋件21载置在壳体40上。固定涡旋件21和壳体40通过未图示的
固定单元(例如螺栓)而相互固定。
70.固定涡旋件21具有圆板状的固定侧端板21a、涡卷状的固定侧涡旋齿21b以及周缘部21c。固定侧涡旋齿21b及周缘部21c从固定侧端板21a的前表面(下表面)向可动涡旋件22侧(下方)延伸。从下方观察固定涡旋件21时,固定侧涡旋齿21b从固定侧端板21a的中心附近朝向外周侧形成为涡卷状(渐开线形状)。周缘部21c具有圆筒形状。周缘部21c以包围固定侧涡旋齿21b的方式配置于固定侧端板21a的外周侧。
71.在涡旋压缩机100运转时,可动涡旋件22相对于固定涡旋件21回转,由此,从第一空间s1流入周缘侧的压缩室sc的制冷剂(制冷循环中的低压的制冷剂)随着向最内侧(中央侧)的压缩室sc移动而被压缩。在固定侧端板21a的中心附近,以在固定侧端板21a的厚度方向(上下方向)上贯通固定侧端板21a的方式形成有将由压缩室sc压缩后的制冷剂排出的排出口21d。排出口21d与最内侧的压缩室sc连通。在固定侧端板21a的上方安装有对排出口21d进行开闭的排出阀23。在与排出口21d连通的最内侧的压缩室sc的压力比排出阀23上方的空间(第二空间s2)的压力大规定值以上的情况下,排出阀23打开,制冷剂从排出口21d流入第二空间s2。
72.在固定侧端板21a的排出口21d的外周侧,以在固定侧端板21a的厚度方向上贯通固定侧端板21a的方式形成有溢流孔21e。溢流孔21e跟形成于比与排出口21d连通的最内侧的压缩室sc靠外周侧的位置的压缩室sc连通。溢流孔21e与压缩机构20的压缩中途的压缩室sc连通。溢流孔21e也可以在固定侧端板21a形成有多个。在固定侧端板21a的上方安装有对溢流孔21e进行开闭的溢流阀24。在与溢流孔21e连通的压缩室sc的压力比溢流阀24上方的空间(第二空间s2)的压力大规定值以上的情况下,溢流阀24打开,制冷剂从溢流孔21e流入第二空间s2。
73.(2-2-2)可动涡旋件22
74.可动涡旋件22具有圆板状的可动侧端板22a、涡卷状的可动侧涡旋齿22b以及圆筒状的轴毂部22c。可动侧涡旋齿22b从可动侧端板22a的前表面(上表面)向固定涡旋件21侧延伸。轴毂部22c从可动侧端板22a的背面(下表面)向下方延伸。从上方观察可动涡旋件22时,可动侧涡旋齿22b从可动侧端板22a的中心附近朝向外周侧形成为涡卷状(渐开线形状)。
75.固定涡旋件21的固定侧涡旋齿21b和可动涡旋件22的可动侧涡旋齿22b相互组合而形成压缩室sc。固定涡旋件21和可动涡旋件22以固定侧端板21a的前表面(下表面)与可动侧端板22a的前表面(上表面)对置的方式组合。由此,形成被固定侧端板21a、固定侧涡旋齿21b、可动侧涡旋齿22b及可动侧端板22a包围而成的压缩室sc。
76.在具有对称涡旋齿结构的压缩机构20中,在沿着铅垂方向(第一方向)观察时,由可动侧涡旋齿22b的外周面与固定侧涡旋齿21b的内周面包围的压缩室sc(图5a~图5d的第一压缩室sc1)和由可动侧涡旋齿22b的内周面与固定侧涡旋齿21b的外周面包围的压缩室sc(图5a~图5d的第二压缩室sc2)形成为点对称。可动侧涡旋齿22b的卷绕结束角与固定侧涡旋齿21b的卷绕结束角相同。可动侧涡旋齿22b的卷绕结束角是以可动侧端板22a的中心侧的端部(卷绕开始部)为基点(0
°
)的情况下的、可动侧端板22a的外周侧的端部(卷绕结束部)的涡卷方向(周向)上的角度。固定侧涡旋齿21b的卷绕结束角是以固定侧端板21a的中心侧的端部(卷绕开始部)为基点(0
°
)的情况下的、固定侧端板21a的外周侧的端部(卷绕结
束部)的涡卷方向(周向)上的角度。在具有对称涡旋齿结构的压缩机构20中,第一压缩室sc1中的制冷剂的压缩以及第二压缩室sc2中的制冷剂的压缩在相同的定时进行。关于固定涡旋件21及可动涡旋件22的详细情况在后面叙述。
77.可动侧端板22a配置在浮动部件30的上方。在涡旋压缩机100的运转过程中,浮动部件30由形成于浮动部件30的下方的背压空间b的压力朝向可动涡旋件22推压。由此,浮动部件30的上部的按压部34与可动侧端板22a的背面(下表面)接触时,浮动部件30将可动涡旋件22朝向固定涡旋件21按压。借助浮动部件30将可动涡旋件22朝向固定涡旋件21按压的力,可动涡旋件22与固定涡旋件21紧贴。由此,抑制制冷剂从固定侧涡旋齿21b的齿顶(末端面)与可动侧端板22a的底面(与齿顶接触的主表面)之间的间隙、以及可动侧涡旋齿22b的齿顶与固定侧端板21a的底面之间的间隙泄漏。
78.背压空间b是形成于浮动部件30与壳体40之间的空间。如图2所示,背压空间b主要形成于浮动部件30的背面侧(下方侧)。压缩机构20的压缩室sc的制冷剂被引导至背压空间b。背压空间b与背压空间b周围的第一空间s1之间被密封。在涡旋压缩机100的运转过程中,背压空间b的压力比第一空间s1内的压力高。
79.在可动涡旋件22与浮动部件30之间配置有十字头联轴节25。十字头联轴节25与可动涡旋件22及浮动部件30双方滑动自如地卡合。十字头联轴节25限制可动涡旋件22的自转,使可动涡旋件22相对于固定涡旋件21回转。
80.轴毂部22c配置于由浮动部件30的内表面包围而成的偏心部空间38。在轴毂部22c的内部配置有轴瓦26。轴瓦26例如被压入并固定于轴毂部22c的内部。在轴瓦26中插入有驱动轴80的偏心部81。通过将偏心部81插入轴瓦26,从而将可动涡旋件22与驱动轴80连结。
81.(2-3)浮动部件30
82.浮动部件30配置在可动涡旋件22的背面侧(与配置固定涡旋件21的一侧相反的一侧)。浮动部件30借助背压空间b的压力而被朝向可动涡旋件22推压,从而将可动涡旋件22朝向固定涡旋件21按压。浮动部件30的一部分也作为支承驱动轴80的轴承发挥功能。
83.浮动部件30主要具有圆筒部30a、按压部34以及上部轴承壳体31。
84.圆筒部30a形成被圆筒部30a的内表面包围而成的偏心部空间38。在偏心部空间38配置有可动涡旋件22的轴毂部22c。
85.按压部34是从圆筒部30a的上端朝向可动涡旋件22延伸的圆筒形状的部件。如图2所示,按压部34的上端的推力面34a与可动涡旋件22的可动侧端板22a的背面对置。在俯视时,推力面34a形成为环状。当浮动部件30被背压空间b的压力朝向可动涡旋件22推压时,推力面34a与可动侧端板22a的背面接触,将可动涡旋件22朝向固定涡旋件21按压。
86.上部轴承壳体31是配置于圆筒部30a的下方(偏心部空间38的下方)的圆筒形状的部件。在上部轴承壳体31的内部配置有轴瓦32。轴瓦32例如被压入并固定于上部轴承壳体31的内部。轴瓦32将驱动轴80的主轴82支承为旋转自如。
87.(2-4)壳体40
88.壳体40是配置在固定涡旋件21及浮动部件30的下方的大致圆筒形状的部件。壳体40支承浮动部件30。在壳体40与浮动部件30之间形成有背压空间b。壳体40例如通过压入而安装于外壳10的内表面。
89.(2-5)密封部件60
90.密封部件60是用于在浮动部件30与壳体40之间形成背压空间b的部件。密封部件60例如是o形环等衬垫。如图2所示,密封部件60将背压空间b划分为第一室b1和第二室b2。第一室b1和第二室b2是在俯视时形成为大致圆环状的空间。第二室b2配置于第一室b1的内侧。在俯视时,第一室b1的面积比第二室b2的面积大。
91.第一室b1经由第一流路64而与压缩中途的压缩室sc连通。第一流路64是将压缩机构20中的压缩中途的制冷剂(中间压的制冷剂)向第一室b1引导的流路。第一流路64形成于固定涡旋件21和壳体40。
92.第二室b2经由第二流路65而与固定涡旋件21的排出口21d连通。第二流路65是将从压缩机构20排出的制冷剂(高压的制冷剂)向第二室b2引导的流路。第二流路65形成于固定涡旋件21和壳体40。
93.在涡旋压缩机100的运转过程中,第二室b2的压力高于第一室b1的压力。但是,由于在俯视时第一室b1的面积比第二室b2的面积大,因此,基于背压空间b的压力产生的、可动涡旋件22对固定涡旋件21的按压力难以变得过大。由于第二室b2配置于比第一室b1靠内侧的位置,因此,容易确保可动涡旋件22借助压缩室sc的压力而被向下方推压的力与可动涡旋件22被浮动部件30向上方推压的力之间的平衡。
94.(2-6)马达70
95.马达70驱动可动涡旋件22。马达70具有定子71和转子72。定子71是固定于外壳10的内表面的环状的部件。转子72是配置于定子71的内侧的圆筒形状的部件。在定子71的内周面与转子72的外周面之间形成有微小的间隙(气隙)。
96.驱动轴80沿转子72的轴向贯通转子72。转子72经由驱动轴80而与可动涡旋件22连结。马达70通过转子72旋转来驱动可动涡旋件22,使可动涡旋件22相对于固定涡旋件21回转。
97.(2-7)驱动轴80
98.驱动轴80将马达70的转子72与压缩机构20的可动涡旋件22连结。驱动轴80在上下方向上延伸。驱动轴80将马达70的驱动力传递至可动涡旋件22。
99.驱动轴80主要具有偏心部81和主轴82。
100.偏心部81配置在主轴82的上方。偏心部81的中心轴线相对于主轴82的中心轴线偏心。偏心部81与配置在可动涡旋件22的轴毂部22c的内部的轴瓦26连结。
101.主轴82由配置于浮动部件30的上部轴承壳体31的轴瓦32以及配置于下部轴承壳体90的轴瓦91支承为旋转自如。主轴82在上部轴承壳体31与下部轴承壳体90之间与马达70的转子72连结。主轴82在上下方向上延伸。
102.在驱动轴80的内部形成有未图示的油通路。油通路具有主路径(未图示)和分支路径(未图示)。主路径从驱动轴80的下端沿驱动轴80的轴向延伸到上端。分支路径从主路径沿驱动轴80的径向延伸。存油空间11的冷冻机油由设置于驱动轴80的下端的泵(未图示)汲取,并通过油路径被供给至驱动轴80与各轴瓦26、32、91的滑动部以及压缩机构20的滑动部等。
103.(2-8)下部轴承壳体90
104.下部轴承壳体90固定于外壳10的内表面。下部轴承壳体90配置于马达70的下方。在下部轴承壳体90的内部配置有轴瓦91。轴瓦91例如被压入并固定于下部轴承壳体90的内
部。驱动轴80的主轴82穿过轴瓦91。轴瓦91将驱动轴80的主轴82的下部侧支承为旋转自如。
105.(3)涡旋压缩机100的动作
106.对通常状态下涡旋压缩机100的动作进行说明。通常状态是从压缩机构20的排出口21d排出的制冷剂的压力比压缩中途的压缩室sc的压力高的状态。
107.当马达70进行驱动时,转子72旋转,与转子72连结的驱动轴80也旋转。当驱动轴80旋转时,借助十字头联轴节25,可动涡旋件22不自转而相对于固定涡旋件21回转。从吸入管13流入第一空间s1的低压的制冷剂通过形成于壳体40的制冷剂通路(未图示)而被吸入压缩机构20的周缘侧的压缩室sc。当可动涡旋件22回转时,第一空间s1与压缩室sc变得不连通,压缩室sc的容积减小,压缩室sc的压力上升。从注入管15向压缩中途的压缩室sc注入制冷剂。制冷剂的压力随着从周缘侧(外侧)的压缩室sc向中央侧(内侧)的压缩室sc移动而上升,最终成为制冷循环中的高压。被压缩机构20压缩后的制冷剂从固定侧端板21a的排出口21d向第二空间s2排出。第二空间s2的高压制冷剂从排出管14排出。
108.(4)固定涡旋件21和可动涡旋件22的详细结构
109.如图3所示,在俯视观察时,固定侧涡旋齿21b呈涡卷状从固定侧端板21a的中心侧的端部即卷绕开始部21s形成到外周侧的端部即卷绕结束部21e。固定侧涡旋齿21b从固定侧端板21a的主表面21p(下表面)起以具有规定的固定侧尺寸的方式沿着铅垂方向(第一方向)延伸。固定侧尺寸是从固定侧端板21a的主表面21p、即与固定侧涡旋齿21b的下端连结的表面到固定侧涡旋齿21b的末端面的、固定侧涡旋齿21b的铅垂方向上的尺寸。固定侧尺寸从卷绕开始部21s到卷绕结束部21e不是恒定的。在固定侧涡旋齿21b的两侧,有时固定侧端板21a的主表面21p的高度位置不同。
110.如图4所示,在俯视观察时,可动侧涡旋齿22b呈涡卷状从可动侧端板22a的中心侧的端部即卷绕开始部22s形成到外周侧的端部即卷绕结束部22e。可动侧涡旋齿22b从可动侧端板22a的与固定侧端板21a的主表面21p(下表面)对置的主表面22p(上表面)起以具有规定的可动侧尺寸的方式沿着铅垂方向延伸。可动侧尺寸是从可动侧端板22a的主表面22p、即与可动侧涡旋齿22b的下端连结的表面到可动侧涡旋齿22b的末端面的、可动侧涡旋齿22b的铅垂方向上的尺寸。可动侧尺寸从卷绕开始部22s到卷绕结束部22e不是恒定的。在可动侧涡旋齿22b的两侧,有时可动侧端板22a的主表面22p的高度位置不同。
111.图5a~图5d表示可动涡旋件22相对于固定涡旋件21回转1周(360
°
)期间的状态的转变。图5a~图5d分别示出相位从之前的状态前进了90
°
的状态。换言之,图5a~图5d分别示出可动涡旋件22从之前的状态回转了90
°
的状态。在图5a~图5d中,固定侧涡旋齿21b及可动侧涡旋齿22b用阴影区域表示。
112.如图5a~图5d所示,固定涡旋件21及可动涡旋件22在可动涡旋件22回转的期间形成第一压缩室sc1和第二压缩室sc2。图5a示出固定侧涡旋齿21b及可动侧涡旋齿22b的外周部闭合而制冷剂的吸入工序完成的状态。换言之,图5a示出形成有第一压缩室sc1和第二压缩室sc2的第一时刻的状态。
113.如图3所示,固定侧涡旋齿21b具有在俯视时位于最外周的固定侧基准点21f。如图5a所示,固定侧基准点21f位于在第一时刻与可动侧涡旋齿22b的侧面接触的位置。
114.如图4所示,可动侧涡旋齿22b具有在俯视时位于最外周的可动侧基准点22f。如图5a所示,可动侧基准点22f位于在第一时刻与固定侧涡旋齿21b的侧面接触的位置。
115.在通常状态下涡旋压缩机100运转时,存在如下情况:由于浮动部件30将可动涡旋件22朝向固定涡旋件21按压的力、以及第一压缩室sc1和第二压缩室sc2的压力而使可动侧端板22a相对于水平面倾斜。换言之,在涡旋压缩机100运转时,存在可动涡旋件22相对于固定涡旋件21倾斜的情况。以下,将在涡旋压缩机100运转时浮动部件30将可动涡旋件22按压于固定涡旋件21的力称为“按压力”。
116.固定侧尺寸(固定侧涡旋齿21b的铅垂方向的尺寸)及可动侧尺寸(可动侧涡旋齿22b的铅垂方向的尺寸)被设定为,在可动涡旋件22相对于固定涡旋件21倾斜时,满足以下的第一条件及第二条件。
117.·
第一条件:固定侧涡旋齿21b的末端面所包含的固定侧第一区域21j承受按压力。
118.·
第二条件:可动侧涡旋齿22b的末端面所包含的可动侧第一区域22j承受按压力。
119.固定侧第一区域21j是从固定侧基准点21f起朝向固定侧涡旋齿21b的卷绕开始部21s为0.0周~0.5周的部分的末端面、以及1.0周~1.5周的部分的末端面。
120.可动侧第一区域22j是从可动侧基准点22f起朝向可动侧涡旋齿22b的卷绕开始部22s为0.0周~0.5周的部分的末端面、以及1.0周~1.5周的部分的末端面。
121.这里,从规定的地点起1周的地点是,在俯视观察固定侧涡旋齿21b和可动侧涡旋齿22b的情况下,从规定的地点起沿着涡旋齿的涡卷延伸的方向前进1周(360
°
)的地点。
122.在图3中,固定侧第一区域21j由阴影区域表示。在图4中,可动侧第一区域22j由阴影区域表示。
123.固定侧尺寸及可动侧尺寸例如是通过使固定侧涡旋齿21b及可动侧涡旋齿22b的末端面的高度位置变化、或使固定侧端板21a的主表面21p(下表面)及可动侧端板22a的主表面22p(上表面)的高度位置变化来设定的。
124.固定侧尺寸及可动侧尺寸的适当的值是考虑涡旋压缩机100的种类、固定涡旋件21及可动涡旋件22的尺寸、制冷剂的温度及制冷剂的压力等各种原因而决定的。因此,固定侧尺寸及可动侧尺寸不是唯一确定的。
125.接着,参照图6~图9对可动涡旋件22相对于固定涡旋件21倾斜时的状态进行说明。图6~图9所示的固定涡旋件21和可动涡旋件22由沿图3的线段a-a和图4的线段b-b剖切时的剖视图表示。图6及图7示出可动涡旋件22未倾斜的状态。图8及图9示出可动涡旋件22倾斜的状态。图9示出可动涡旋件22从图8所示的状态回转了180
°
的状态。图6示出固定涡旋件21及可动涡旋件22未发生变形的状态。图7~图9示出固定涡旋件21和可动涡旋件22发生变形的状态。固定涡旋件21及可动涡旋件22的变形起因于第一压缩室sc1及第二压缩室sc2的压力和热中的至少一方。图8~图9所示的可动涡旋件22的倾斜以及图7~图9所示的变形比实际夸张地描绘。
126.在本实施方式中,以固定侧第一区域21j和可动侧第一区域22j承受按压力的方式调整固定侧端板21a的主表面21p和可动侧端板22a的主表面22p的高度位置。
127.具体而言,如图3所示,固定侧端板21a的主表面21p中的从第一范围基准位置21q起0.0周~1.0周的固定侧第一范围21m1的高度位置与从第一范围基准位置21q起1.0周~1.5周的固定侧第二范围21m2的高度位置相同。第一范围基准位置21q是在沿着铅垂方向观
察固定侧端板21a的情况下,在第一时刻与可动侧基准点22f相同的位置。可动侧涡旋齿22b的末端面在从可动侧基准点22f起朝向可动侧涡旋齿22b的卷绕开始部22s为0.0周~1.0周的部分处与固定侧第一范围21m1接触,在1.0周~1.5周的部分处与固定侧第二范围21m2接触。
128.同样地,如图4所示,可动侧端板22a的主表面22p中的从第二范围基准位置22q起0.0周~1.0周的可动侧第一范围22m1的高度位置与从第二范围基准位置22q起1.0周~1.5周的可动侧第二范围22m2的高度位置相同。第二范围基准位置22q是在沿着铅垂方向观察可动侧端板22a的情况下,在第一时刻与固定侧基准点21f相同的位置。固定侧涡旋齿21b的末端面在从固定侧基准点21f起朝向固定侧涡旋齿21b的卷绕开始部21s为0.0周~1.0周的部分处与可动侧第一范围22m1接触,在1.0周~1.5周的部分处与可动侧第二范围22m2接触。
129.由此,与可动涡旋件22的倾斜相应地,固定侧第二范围21m2以及可动侧第二范围22m2与现有的结构相比变浅。固定侧第二范围21m2和可动侧第二范围22m2的高度位置也可以分别不与固定侧第一范围21m1和可动侧第一范围22m1的高度位置相同。
130.对以满足上述的第一条件以及第二条件的方式设定了固定侧尺寸以及可动侧尺寸的情况进行说明。在图7~图9中,由于固定涡旋件21及可动涡旋件22的变形而引起的固定侧尺寸及可动侧尺寸的增加量由填充区域表示。在图8中,可动侧涡旋齿22b的可动侧第一区域22j与固定侧端板21a的固定侧第一范围21m1及固定侧第二范围21m2接触。此时,可动侧第一区域22j承受按压力,因此,可动侧涡旋齿22b在可动侧第一区域22j承受推力载荷。在图9中,固定侧涡旋齿21b的固定侧第一区域21j与可动侧端板22a的可动侧第一范围22m1及可动侧第二范围22m2接触。此时,固定侧第一区域21j承受按压力,因此,固定侧涡旋齿21b在固定侧第一区域21j承受推力载荷。
131.(5)特征
132.在涡旋压缩机100中,如图8及图9所示,在可动涡旋件22相对于固定涡旋件21倾斜时,可动侧涡旋齿22b的可动侧第一区域22j或固定侧涡旋齿21b的固定侧第一区域21j承受推力载荷。
133.现有的涡旋压缩机的固定侧尺寸及可动侧尺寸不满足上述的第一条件及第二条件。因此,在现有的涡旋压缩机中,在可动涡旋件22倾斜时,固定侧涡旋齿21b和可动侧涡旋齿22b的末端面中的承受推力载荷的区域比固定侧第一区域21j和可动侧第一区域22j窄。例如,在现有的涡旋压缩机中,仅从固定侧基准点21f起朝向固定侧涡旋齿21b的卷绕开始部21s为0.0周~0.5周的部分的末端面、以及从可动侧基准点22f起朝向可动侧涡旋齿22b的卷绕开始部22s为0.0周~0.5周的部分的末端面是承受推力载荷的区域。因此,现有的涡旋压缩机中承受推力载荷的涡旋齿末端面所承受的推力载荷的压力高于本实施方式中的固定侧第一区域21j以及可动侧第一区域22j所承受的推力载荷的压力。若在可动涡旋件22的回转过程中施加于固定侧涡旋齿21b及可动侧涡旋齿22b的末端面的压力较高,则在固定侧端板21a及可动侧端板22a的底面(主表面21p、22p)产生过大的表面压力。其结果是,固定侧端板21a及可动侧端板22a的底面磨损,可动涡旋件22的倾斜增加,制冷剂从第一压缩室sc1及第二压缩室sc2的泄漏量增加。
134.因此,在本实施方式中,通过充分确保由推力载荷产生的压力所作用的固定侧涡
旋齿21b及可动侧涡旋齿22b的末端面的区域(固定侧第一区域21j及可动侧第一区域22j),从而抑制固定涡旋件21及可动涡旋件22的磨损,抑制涡旋压缩机100的效率的降低。
135.另外,在涡旋压缩机100中,固定侧第一区域21j以及可动侧第一区域22j分别形成于固定侧涡旋齿21b以及可动侧涡旋齿22b的最外周附近。因此,减少了从周缘侧(外侧)的压缩室sc向第一空间s1漏出的制冷剂的量,因此,能够抑制涡旋压缩机100的效率的降低。
136.(6)变形例
137.(6-1)变形例a
138.在实施方式的涡旋压缩机100中,固定侧尺寸及可动侧尺寸也可以进一步被设定为,在固定涡旋件21及可动涡旋件22发生变形时,满足以下的第三条件及第四条件。
139.·
第三条件:固定侧涡旋齿21b的末端面所包含的固定侧第二区域21k不承受按压力。
140.·
第四条件:可动侧涡旋齿22b的末端面所包含的可动侧第二区域22k不承受按压力。
141.如图10所示,固定侧第二区域21k是从固定侧基准点21f起0.5周~1.0周的部分的末端面。
142.如图11所示,可动侧第二区域22k是从可动侧基准点22f起0.5周~1.0周的部分的末端面。
143.在图10中,固定侧第二区域21k用阴影区域表示。在图11中,可动侧第二区域22k用阴影区域表示。
144.接着,参照图12~图15对可动涡旋件22相对于固定涡旋件21倾斜时的状态进行说明。图12~图15所示的固定涡旋件21和可动涡旋件22由沿图10的线段c-c和图11的线段d-d剖切时的剖视图表示。图12及图13示出可动涡旋件22未倾斜的状态。图14及图15示出可动涡旋件22倾斜的状态。图15示出可动涡旋件22从图14所示的状态回转了180
°
的状态。图12示出固定涡旋件21及可动涡旋件22未发生变形的状态。图13~图15示出了固定涡旋件21和可动涡旋件22发生变形的状态。固定涡旋件21及可动涡旋件22的变形起因于第一压缩室sc1及第二压缩室sc2的压力和热的至少一方。
145.在本变形例中,以固定侧第二区域21k和可动侧第二区域22k不承受按压力的方式,调整固定侧端板21a的主表面21p和可动侧端板22a的主表面22p的高度位置。
146.具体而言,如图10所示,固定侧端板21a的主表面21p中的、从第一范围基准位置21q起0.5周~1.0周的固定侧第三范围21m3的高度位置比从第一范围基准位置21q起0.0周~0.5周的固定侧第四范围21m4的高度位置高。
147.同样地,如图11所示,可动侧端板22a的主表面22p中的、从第二范围基准位置22q起0.5周~1.0周的可动侧第三范围22m3的高度位置比从第二范围基准位置22q起0.0周~0.5周的可动侧第四范围22m4的高度位置低。
148.由此,固定侧第三范围21m3和可动侧第三范围22m3与现有的结构相比,考虑固定涡旋件21和可动涡旋件22的变形而变深。
149.对以满足上述的第三条件以及第四条件的方式设定了固定侧尺寸以及可动侧尺寸的情况进行说明。在图13~图15中,由固定涡旋件21及可动涡旋件22的变形引起的固定侧尺寸及可动侧尺寸的增加量用填充区域表示。在图14中,固定侧涡旋齿21b的固定侧第二
区域21k不与可动侧端板22a的可动侧第三范围22m3接触。此时,固定侧第二区域21k未承受按压力,因此,固定侧涡旋齿21b在固定侧第二区域21k不承受推力载荷。在图15中,可动侧涡旋齿22b的可动侧第二区域22k不与固定侧端板21a的固定侧第三范围21m3接触。此时,可动侧第二区域22k未承受按压力,因此,可动侧涡旋齿22b在可动侧第二区域22k不承受推力载荷。
150.由此,在本变形例中,在可动涡旋件22倾斜且固定涡旋件21及可动涡旋件22变形的状态下,在固定侧第二区域21k以及可动侧第二区域22k不承受推力载荷,因此,相应地能够在固定侧第一区域21j以及可动侧第一区域22j有效地承受推力载荷。因此,能够抑制固定涡旋件21和可动涡旋件22的磨损,抑制涡旋压缩机100的效率的降低。
151.(6-2)变形例b
152.在实施方式的涡旋压缩机100中,固定侧基准点21f及可动侧基准点22f分别是在第一时刻与可动侧涡旋齿22b及固定侧涡旋齿21b的侧面接触的位置(关闭位置)。但是,固定侧基准点21f及可动侧基准点22f也可以不是关闭位置。接着,对本变形例中的固定侧基准点21f及可动侧基准点22f进行说明。
153.如图16所示,固定侧涡旋齿21b具有在固定侧涡旋齿21b的最外周处形成于固定侧涡旋齿21b的末端面的固定侧台阶21g。固定侧基准点21f在固定侧涡旋齿21b的末端面延伸的方向上位于固定侧台阶21g所在的地点。从卷绕结束部21e到固定侧台阶21g的末端面的高度位置比从固定侧台阶21g到卷绕开始部21s的末端面的高度位置低。固定侧台阶21g的铅垂方向的尺寸例如为50μm。固定侧台阶21g在固定侧涡旋齿21b的周向上的位置例如处于从卷绕结束部21e起30
°
~60
°
的范围。
154.如图17所示,可动侧涡旋齿22b具有在可动侧涡旋齿22b的最外周处形成于可动侧涡旋齿22b的末端面的可动侧台阶22g。可动侧基准点22f在可动侧涡旋齿22b的末端面延伸的方向上位于可动侧台阶22g所在的地点。从卷绕结束部22e到可动侧台阶22g的末端面的高度位置比从可动侧台阶22g到卷绕开始部22s的末端面的高度位置低。可动侧台阶22g的铅垂方向的尺寸例如为50μm。可动侧台阶22g在可动侧涡旋齿22b的周向上的位置例如处于从卷绕结束部22e起30
°
~60
°
的范围。
155.在本变形例中,利用固定侧台阶21g和可动侧台阶22g来抑制承受按压力的涡旋齿在固定侧涡旋齿21b与可动侧涡旋齿22b之间切换时、推力载荷集中于固定侧涡旋齿21b的卷绕结束部21e和可动侧涡旋齿22b的卷绕结束部22e。因此,施加于固定侧涡旋齿21b及可动侧涡旋齿22b的表面压力减小,因此,能够抑制固定涡旋件21及可动涡旋件22的磨损,抑制涡旋压缩机100的效率的降低。
156.(6-3)变形例c
157.实施方式的涡旋压缩机100具备用于将可动涡旋件22朝向固定涡旋件21按压的浮动部件30。但是,涡旋压缩机100也可以是不具备浮动部件30的类型的压缩机。
158.(6-4)变形例d
159.实施方式的涡旋压缩机100的压缩机构20具有对称涡旋齿结构。但是,压缩机构20也可以具有非对称涡旋齿结构。在图18及图19所示的具有非对称涡旋齿结构的压缩机构20中,固定侧涡旋齿21b的卷绕数和可动侧涡旋齿22b的卷绕数互不相同。如图20所示,在具有非对称涡旋齿结构的压缩机构20中,在沿着铅垂方向(第一方向)观察时,由可动侧涡旋齿
22b的外周面与固定侧涡旋齿21b的内周面包围的压缩室(第一压缩室sc1)和由可动侧涡旋齿22b的内周面与固定侧涡旋齿21b的外周面包围的压缩室(第二压缩室sc2)未形成为点对称。可动侧涡旋齿22b的卷绕结束角与固定侧涡旋齿21b的卷绕结束角不同。在具有非对称涡旋齿结构的压缩机构20中,第一压缩室sc1中的制冷剂的压缩和第二压缩室sc2中的制冷剂的压缩在互不相同的定时进行。
160.在本变形例中,固定侧第一区域21j是从固定侧基准点21f起0.0周~2.0周的部分的末端面。固定侧基准点21f的定义与实施方式或变形例b相同。在图18中,固定侧第一区域21j由阴影区域表示。
161.接着,参照图21及图22,对可动涡旋件22相对于固定涡旋件21倾斜时的状态进行说明。图21和图22所示的固定涡旋件21和可动涡旋件22由沿图18的线段e-e和图19的线段f-f剖切时的剖视图表示。图21及图22示出可动涡旋件22倾斜的状态。图22示出可动涡旋件22从图21所示的状态回转了180
°
的状态。图21及图22示出固定涡旋件21及可动涡旋件22发生变形的状态。图21及图22所示的可动涡旋件22的倾斜和变形比实际夸张地描绘。在图21和图22中,由固定涡旋件21和可动涡旋件22的变形引起的固定侧尺寸和可动侧尺寸的增加量用填充区域表示。
162.在本变形例中,与实施方式同样地,固定侧尺寸及可动侧尺寸被设定为,在可动涡旋件22相对于固定涡旋件21倾斜时,固定侧涡旋齿21b的末端面所包含的固定侧第一区域21j承受可动涡旋件22被按压于固定涡旋件21的力。具体而言,以固定侧第一区域21j从可动侧端板22a的主表面22p承受按压力的方式,调整固定侧端板21a的主表面21p和可动侧端板22a的主表面22p的高度位置。
163.由此,如图21及图22所示,在可动涡旋件22的回转过程中,固定侧涡旋齿21b的末端面在从固定侧基准点21f起朝向固定侧涡旋齿21b的卷绕开始部21s为0.0周~2.0周的部分的一部分处与可动侧端板22a的主表面22p接触。在图21中,固定侧第一区域21j中的从固定侧基准点21f起朝向固定侧涡旋齿21b的卷绕开始部21s为0.0周~0.5周的部分的末端面以及1.0周~1.5周的部分的末端面与可动侧端板22a的主表面22p接触。在图22中,固定侧第一区域21j中的从固定侧基准点21f起朝向固定侧涡旋齿21b的卷绕开始部21s为0.5周~1.0周的部分的末端面以及1.5周~2.0周的部分的末端面与可动侧端板22a的主表面22p接触。
164.在本变形例中,与实施方式同样地,通过充分确保由推力载荷产生的压力所作用的固定侧涡旋齿21b的末端面的区域(固定侧第一区域21j),从而抑制固定涡旋件21及可动涡旋件22的磨损,抑制涡旋压缩机100的效率的降低。
165.另外,固定侧第一区域21j形成在固定侧涡旋齿21b的最外周附近。因此,减少从周缘侧(外侧)的压缩室sc向第一空间s1漏出的制冷剂的量,因此,能够抑制涡旋压缩机100的效率的降低。
166.变形例c能够应用于本变形例。
167.(6-5)变形例e
168.在变形例d中,固定侧尺寸和可动侧尺寸也可以进一步被设定为,在固定涡旋件21和可动涡旋件22发生变形时,可动侧涡旋齿22b的末端面所包含的可动侧第二区域22k不承受可动涡旋件22被按压于固定涡旋件21的力。具体而言,以可动侧第二区域22k不从固定侧
端板21a的主表面21p承受按压力的方式,调整固定侧端板21a的主表面21p和可动侧端板22a的主表面22p的高度位置。
169.在本变形例中,可动侧第二区域22k是从可动侧基准点22f起0.0周~1.0周的部分的末端面。可动侧基准点22f的定义与实施方式或变形例b相同。在图19中,可动侧第二区域22k用阴影区域表示。
170.接着,参照图23及图24,对可动涡旋件22相对于固定涡旋件21倾斜时的状态进行说明。图23和图24所示的固定涡旋件21和可动涡旋件22由沿图18的线段e-e和图19的线段f-f剖切时的剖视图表示。图23及图24示出可动涡旋件22倾斜的状态。图24示出可动涡旋件22从图23所示的状态回转了180
°
的状态。图23及图24示出固定涡旋件21及可动涡旋件22发生变形的状态。图23及图24所示的可动涡旋件22的倾斜和变形比实际夸张地描绘。在图23和图24中,由固定涡旋件21和可动涡旋件22的变形引起的固定侧尺寸和可动侧尺寸的增加量用填充区域表示。
171.在本变形例中,以可动侧第二区域22k不从固定侧端板21a的主表面21p承受按压力的方式,调整固定侧端板21a的主表面21p和可动侧端板22a的主表面22p的高度位置。
172.由此,如图23及图24所示,在可动涡旋件22的回转过程中,可动侧涡旋齿22b的末端面在从可动侧基准点22f起朝向可动侧涡旋齿22b的卷绕开始部22s为0.0周~1.0周的部分的一部分处不与固定侧端板21a的主表面21p接触。具体而言,在可动涡旋件22的回转过程中,固定侧端板21a的主表面21p不与可动侧第二区域22k接触。
173.在本变形例中,与变形例a同样地,在可动涡旋件22倾斜且固定涡旋件21和可动涡旋件22变形的状态下,可动涡旋件22在可动侧第二区域22k不承受推力载荷。因此,与可动涡旋件22不承受推力载荷相应地,固定涡旋件21能够在固定侧第一区域21j有效地承受推力载荷。因此,能够抑制固定涡旋件21和可动涡旋件22的磨损,抑制涡旋压缩机100的效率的降低。
174.―小结―
175.以上,对本发明的实施方式进行了说明,但应当理解,能够在不脱离权利要求书所记载的本发明的主旨以及范围的情况下进行方式、细节的各种变更。
176.标号说明
177.21固定涡旋件
178.21a固定侧端板
179.21b固定侧涡旋齿
180.21f固定侧基准点
181.21g固定侧台阶
182.21j固定侧第一区域
183.21k固定侧第二区域
184.22可动涡旋件
185.22a可动侧端板
186.22b可动侧涡旋齿
187.22f可动侧基准点
188.22g可动侧台阶
189.22j可动侧第一区域
190.22k可动侧第二区域
191.100涡旋压缩机
192.sc1第一压缩室
193.sc2第二压缩室
194.现有技术文献
195.专利文献
196.专利文献1:日本特开2018-35749号公报
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献