一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

超声电机及海洋环境监测装置

2022-08-11 03:34:20 来源:中国专利 TAG:


1.本技术涉及海洋环境监测领域,尤其涉及一种超声电机及海洋环境监测装置。


背景技术:

2.海洋环境监测的任务包括海洋环境监测、海洋环境风险监测、海洋环境监管监测以及公益服务监测四个方面,以作用于海洋生态环境的保护。海洋环境监测装置通常具有遥感载荷以及保持遥感载荷稳定工作的驱动电机;但是,相关技术中,驱动电机的响应速度较低,不能满足海洋环境监测的需求。


技术实现要素:

3.本技术实施例提供了一种超声电机及海洋环境监测装置,能够提高海洋环境监测装置中驱动电机的响应速度,以满足海洋环境监测的需求。
4.第一方面,本技术的提供了一种超声电机,包括:振动组件,包括压电陶瓷以及位于所述压电陶瓷一侧的定子;移动组件,包括转子以及摩擦件,所述转子位于所述定子远离所述压电陶瓷的一侧,所述摩擦件位于所述定子与所述转子之间,所述摩擦件安装于所述转子,且所述摩擦件靠近所述定子的一侧设置有凹坑织构,所述定子与所述凹坑织构对应的位置设有凸起,所述凸起嵌入所述凹坑织构内;或者所述摩擦件安装于所述定子,且所述摩擦件靠近所述转子的一侧设置有所述凹坑织构,所述转子与所述凹坑织构对应的位置设有所述凸起,所述凸起嵌入所述凹坑织构内。
5.在其中一些实施例中,所述摩擦件的材料为改性聚酰亚胺基复合材料。
6.在其中一些实施例中,超声电机还包括:底座,所述压电陶瓷固定于所述底座;壳体,所述壳体与所述底座围设形成容纳空间,所述振动组件以及所述移动组件位于所述容纳空间内,且所述壳体开设有第一通孔;所述移动组件还包括转动轴,所述转动轴包括主体轴以及挡位板,所述挡位板连接于所述主体轴的周侧,所述主体轴与所述转子动力连接,所述主体轴的一端穿出所述第一通孔,所述挡位板位于所述容纳空间内,且所述挡位板的一侧抵压于所述壳体,另一侧抵压于所述转子。
7.在其中一些实施例中,所述转子上开设有第二通孔,所述定子上开设有第三通孔,所述底座上开设有第四通孔,所述第二通孔、所述第三通孔以及所述第四通孔三者的轴线均与所述第一通孔的轴线共线,所述转动轴远离所述壳体的一端依次穿设于所述第二通孔、所述第三通孔以及所述第四通孔,且与所述第一通孔、所述第二通孔、所述第三通孔以及所述第四通孔间隙配合。
8.在其中一些实施例中,所述移动组件还包括压力垫片,所述压力垫片位于所述挡位板与所述转子之间。
9.在其中一些实施例中,所述转子与所述定子间的法向预压力为200n-300n。
10.在其中一些实施例中,所述摩擦件上的凹坑织构为圆形,且所述凹坑织构的面积密度为7.06%。
11.在其中一些实施例中,所述定子配置有定子主体以及多个定子齿,所述定子齿凸设于所述定子主体靠近所述转子的一侧,且所述的定子齿围设形成一圆环状;所述转子配置有转子主体以及抵接环,所述抵接环凸设于所述转子主体靠近所述定子齿的一侧,所述摩擦件安装于所述抵接环远离所述转子主体的一侧,所述抵接环通过所述摩擦件抵压于所述定子齿。
12.在其中一些实施例中,所述移动组件还包括轴承,所述轴承套设在所述主体轴的周侧;所述壳体设有容置槽,部分所述轴承位于所述容置槽内,所述轴承的一端与所述挡位板抵接,另一端与所述壳体抵接。
13.第二方面,本技术的提供了一种海洋环境监测装置,包括:监测组件,包括遥感载荷、基座、横滚框架、俯仰框架以及方位框架,所述遥感载荷安装于所述基座,所述横滚框架沿x轴安装于所述基座,所述俯仰框架沿y轴安装于所述横滚框架,所述方位框架沿z轴安装于所述俯仰框架,所述x轴、所述y轴以及所述z轴两两相互垂直;及上述的超声电机,所述超声电机包括第一超声电机、第二超声电机以及第三超声电机,所述第一超声电机安装于所述基座,所述第一超声电机与所述横滚框架连接并能够驱动所述横滚框架绕x轴旋转,所述第二超声电机安装于所述横滚框架,所述第二超声电机与所述俯仰框架连接并能够驱动所述俯仰框架绕y轴旋转,所述第三超声电机安装于所述俯仰框架,所述第三超声电机与所述方位框架连接并能够驱动所述方位框架绕z轴旋转。
14.基于本技术实施例中提供的超声电机,转子在定子表面产生的行波作用下进行转动,摩擦件位于定子与转子之间,增加定子与转子之间的摩擦力,以提高定子与转子间的能量转换率;摩擦件安装于转子,且摩擦件靠近定子的一侧设置有凹坑织构,定子与凹坑织构对应的位置设有凸起,凸起嵌入凹坑织构内;或者摩擦件安装于定子,且摩擦件靠近转子的一侧设置有凹坑织构,转子与凹坑织构对应的位置设有凸起,凸起嵌入凹坑织构内;凸起与凹坑织构的边界在机械切削以及嵌合作用下,可增加摩擦件与定子(或是转子)间的摩擦力,进而提高摩擦件与定子(或是转子)间接触界面的摩擦系数,以提高接触界面的能量转换效率,且可防止转子与定子间的转动产生延迟,以提高转子的响应速度,进而提高超声电机的响应速度。
附图说明
15.为了更清楚地说明本技术实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本技术的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
16.图1为本技术一种实施例中的超声电机的整体结构示意图;图2为图1中沿a-a方向的剖切示意图;
图3为本技术一种实施例中的超声电机的爆炸示意图;图4为本技术一种实施例中的压电陶瓷的结构示意图;图5为本技术一种实施例中的摩擦件的输出性能示意图;图6为本技术一种实施例中的海洋环境监测装置的结构示意图;图7为本技术一种实施例中的海洋环境监测装置的另一角度的结构示意图。
17.标记说明:100、超声电机;10、振动组件;11、压电陶瓷;111、压电陶瓷片;12、定子;121、第三通孔;122、定子主体;123、定子齿;20、移动组件;21、转子;211、第二通孔;212、转子主体;213、抵接环;22、摩擦件;23、转动轴;231、主体轴;232、挡位板;24、压力垫片;25、轴承;30、底座;31、第四通孔;32、置物槽;40、壳体;41、第一通孔;42、容置槽;50、容纳空间;61、遥感载荷;62、基座;63、横滚框架;64、俯仰框架;65、方位框架;71、a相;72、b相。
具体实施方式
18.为了使本技术的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本技术进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本技术,并不用于限定本技术。
19.海洋环境监测的任务包括海洋环境监测、海洋环境风险监测、海洋环境监管监测以及公益服务监测四个方面,以作用于海洋生态环境的保护。海洋环境监测装置通常具有遥感载荷以及保持遥感载荷稳定工作的驱动电机;但是,相关技术中,驱动电机的响应速度较低,不能满足海洋环境监测的需求。
20.为了解决上述问题,第一方面,请参见图1至图3,本技术提供了一种超声电机100,超声电机100可包括振动组件10以及移动组件20,振动组件10可包括压电陶瓷11以及设置在压电陶瓷11一侧的定子12;移动组件20可包括转子21以及摩擦件22,转子21位于定子12远离压电陶瓷11的一侧,摩擦件22位于定子12与转子21之间。
21.请结合图4,压电陶瓷11可包括多个压电陶瓷片111,压电陶瓷片111的表面镀银,银材质可作为压电陶瓷片111的电极以与外界电路连通,外界电路可为压电陶瓷片111提供交流电;同时银的电阻率(常温下)较低,导电性能较好,进而可提高压电陶瓷片111的响应速度,同时也可提高电能的利用率。
22.压电陶瓷片111可设置为环状,请参见图4,且每一压电陶瓷片111的其中一个表面可进行二分区,其中的一个分区可进行正向极化(图中的黑色填充部分),另一个分区进行反向极化。极化后的压电陶瓷片111受到电场的作用,可产生形变;具体来说,极化方向与电场方向相同的分区,压电陶瓷片111可产生伸长变形;极化方向与电场的方向相反的分区,压电陶瓷片111可产生压缩变形;进而每一压电陶瓷片111在交流电场的作用下,就可使压电陶瓷片111产生横向弯曲振动。
23.以四片压电陶瓷片111为例进行展开,请参加图4,四片压电陶瓷片111设置为两
组,且将第一组称为a相71,第二组称为b相72。
24.a相71包括第一压电陶瓷片以及第二压电陶瓷片,第一压电陶瓷片包括正向极化区以及反向极化区,正向极化区与反向极化区关于环形的第一压电陶瓷片所在平面的中心点对称;第二压电陶瓷片中的正向极化区以及反向极化区相较于第一压电陶瓷片中的正向极化区以及反向极化区的排布方向绕中心点沿顺时针方向转动180度;b相72包括第三压电陶瓷片以及第四压电陶瓷片,第三压电陶瓷片中的正向极化区以及反向极化区相较于第二压电陶瓷片中的正向极化区以及反向极化区的排布方向绕中心点沿逆时针方向转动90度,第四压电陶瓷片中的正向极化区以及反向极化区相较于第三压电陶瓷片中的正向极化区以及反向极化区的排布方向绕中心点沿逆时针方向转动180度。
25.进一步地,a相71通以sinωt(sinωt的振动频率等于定子12的弯曲共振频率)交流电压时,定子12将产生左右弯曲共振;b相72通以与a相同频率、同幅度的cosωt交变电压,定子12产生的前后弯曲共振。需要说明的是,定子12的弯曲共振频率取决于定子12的材料,可根据定子12的弯曲共振的频率,调整a相71以及b相72通以交流电的振动频率。
26.a相71通以sinωt交流电压,同时b相72通以cosωt交流电压,a相71的左右弯曲共振与b相72的前后弯曲共振进行合成,以使定子12产生旋转弯曲的模态,以使定子12远离压电陶瓷11的一侧产生行波,进而可使定子12远离压电陶瓷11的一侧上的任一质子可产生椭圆运动。
27.进一步地,请参见图3,转子21可设置为圆盘状,且圆盘状的转子21的轴线与环状的压电陶瓷11的轴线共线,以便于转子21在行波的作用下做转动,且可使转子21转动角度以及转动速度较为均匀。
28.摩擦件22安装于转子21,在定子12与摩擦件22间的界面摩擦力的作用下,定子12表面做椭圆运动的质子可推动转子21沿与定子12表面的行波方向相反的方向转动;摩擦件22用于增加定子12与转子21间的摩擦力,以使转子21在行波的作用下,增加定子12与转子21间的能量转换率。同时摩擦件22可设置为环状,且与压电陶瓷11的位置对应;摩擦件22的内径以及外径不做具体限制,可与压电陶瓷11的内径以及外径相同也可不同,需根据实际需求进行设置。
29.在一些实施例中,摩擦件22也可安装固定于定子12,以使转子21与摩擦件22间产生界面摩擦力。摩擦件22与转子21(或者定子12)间的安装方式可为粘接、卡接以及螺接等,可根据实际的需求进行设置。
30.定子12可设置为板状,具体的形状不做具体限制,本技术以定子12为圆形板状为例,圆形板状的定子12的边缘位置的振幅较大,可较为有效地驱动转子21进行转动。摩擦件22的轴线与定子12的中心轴线共线,以使摩擦件22与定子12的组装体较为规整。
31.为了进一步地提高定子12与转子21间的能量转换效率,摩擦件22的表面可采用激光微细加工技术加工出凹坑织构;凹坑向内凹陷以与定子12表面(或者是转子21表面)的凸起相互嵌合,以提高摩擦件22的界面摩擦系数,进而提高摩擦件22与定子12间的摩擦力;通过增加定子12与摩擦件22间的摩擦系数,防止摩擦件22与定子12间的转动产生延迟,以提高转子21的响应速度,进而提高超声电机100的响应速度。
32.在一些实施例中,凹坑织构的形状可为圆状,也可为其他形状,需根据实际的需求设置,本技术中不做限定。
33.需要说明的是,定子12表面的凸起是由于定子12表面的表面粗糙度而产生的凸起,利用凸起与凹坑织构配合,凸起与凹坑织构的边界在机械切削以及嵌合作用下,可增加摩擦件22与定子12(或是转子21)间的摩擦力,进而提高摩擦件22与定子12(或是转子21)间接触界面的摩擦系数,以提高接触界面的能量转换效率,且可防止转子21与定子12间的转动产生延迟,以提高转子21的响应速度,进而提高超声电机100的响应速度。
34.需要说明的是,在一些情况下,可通过对定子12(或者转子21)的靠近摩擦件22的表面进行研磨以使定子12(或者转子21)的表面达到所需的粗糙度需求,即是在此种粗糙度下,定子12表面的凸起能够较好地与凹坑织构配合。
35.进一步地,超声电机依靠定子12与设置在转子21上的摩擦件22间的摩擦界面的摩擦力输出力矩,同时转子21通常质量小,可使转子21的惯性小且响应快,以实现断电自锁,同时超声电机的位移分辨率高,可实现微米级的控制精度。
36.为了提高定子12以及转子21两者的强度以及使用寿命,定子12的材料可为磷青铜材质,转子21的材料可为铝合金材质;在一些实施例中,定子12以及转子21两者的材料可根据实际情况设置,在本技术中不做具体限制。
37.摩擦件22的材料可为改性聚酰亚胺基复合材料,可通过添加功能填料,例如碳纤维、聚四氟乙烯和石墨固体润滑剂以及对位聚苯酚,以获得改性聚酰亚胺基复合材料;改性聚酰亚胺基复合材料可改善摩擦件22的各向异性(各向异性是指物质的全部或部分化学、物理等性质随着方向的改变而有所变化,在不同的方向上呈现出差异的性质)、耐磨性和热稳定性;进一步也可通过调整功能填料的比例,提高摩擦件22的弹性模量以及摩擦系数。本技术中的改性聚酰亚胺基复合材料的摩擦件22的弹性模量为9.39gpa,界面等效平均摩擦系数可达到0.28,玻璃化温度为243℃。
38.进一步地,超声电机还包括底座30以及壳体40,壳体40与底座30围设形成容纳空间50,振动组件10以及移动组件20位于容纳空间50内,以防止振动组件10以及移动组件20受到外界因素的影响。
39.压电陶瓷11安装固定于底座30,底座30的形状不做具体的限制,可根据实际的需求进行设置。本技术中以底座30的形状为正方形板状为例进行展开,且压电陶瓷11的中心轴线与底座30的中心轴线共线;一方面,底座30可为压电陶瓷11提供安装的承载体;另一方面,以使压电陶瓷11与底座30的组装体较为规整。进一步地,具体的安装方式可为粘接、卡接或是螺接等连接方式,具体可根据实际的需求进行设置。
40.移动组件20还包括转动轴23,转动轴23用于将转子21的转动运动传递至待驱动件。转动轴23包括主体轴231以及挡位板232,主体轴231与转子21动力连接,挡位板232连接于主体轴231的周侧,挡位板232可设置为环状,环状的挡位板232的截面可为l状,且l状的竖直边可与主体轴231抵接,增加挡位板232与主体轴231的接触面积,进而增加挡位板232与主体轴231连接的牢固性;具体的连接方式可为粘接、螺接以及卡接等,需根据实际的需求进行设置。
41.请结合图1,壳体40开设有第一通孔41,主体轴231的一端穿出第一通孔41,挡位板232位于容纳空间50内,且挡位板232的一侧抵压于壳体40,另一侧抵压于转子21,进而可利用挡位板232与转子21间的摩擦力,以使挡位板232与转子21靠摩擦传动的方式连接,进而以使转子21可带动转动轴23转动。
42.在一些实施例中,转动轴23的一端也可直接与转子21固定连接,且使转动轴23的轴线与转子21的轴线共线,进而可使转子21带动转动轴23直接转动;此时,转动轴23与转子21的连接方式可为粘接、卡接、螺接等方式,也可利用连接销(连接销的连接方式较为常见,此处不做具体展开)进行固定连接。
43.转子21上可开设有第二通孔211,定子12上可开设有第三通孔121,底座30上开设有第四通孔31,第二通孔211、第三通孔121以及第四通孔31三者的轴线均与第一通孔41的轴线共线,转动轴23远离壳体40的一端依次穿设于第二通孔211、第三通孔121以及第四通孔31,且与第一通孔41、第二通孔211、第三通孔121以及第四通孔31间隙配合。进而转动轴23一端穿设于第一通孔41,另一端通过第二通孔211以及第三通孔121与第四通孔31间隙配合,且壳体40与底座30的位置相对固定,可为转动轴23起到径向支撑以及定位的作用。
44.进一步地,移动组件20还包括压力垫片24,压力垫片24可设置为环状,围设在主体轴231的周侧,且位于挡位板232与转子21之间。同时挡位板232的一侧抵压于壳体40,通过调整挡位板232与定子12间的压力垫片24的厚度,就可调节定子12与转子21之间的压力。
45.压力垫片24可包括多个垫片,每一垫片均具有一定的厚度。在转动轴23的轴线方向上,通过增加或减少挡位板232与定子12间的垫片数量,以增加或是减小转子21与定子12间的法向预压力。具体来说,挡位板232与定子12间的垫片的数量增加,定子12与转子21间的法向预压力增加,使定子12与转子21间的摩擦力增加,提高定子12与转子21间的能量传递效率,进而提高定子12输出的能量利用率。挡位板232与定子12间的垫片数量减少,定子12与转子21间的法向预压力减小,则定子12与转子21间的摩擦力减小。
46.通过调节垫片的数量,以使施加在定子12与转子21间的压力在200n-300n的范围内,同时压电陶瓷11片的激振频率在41-42khz范围内可调。
47.本技术以定子12与转子21间的法向预压力为240n,压电陶瓷11片的激振频率为41.45khz为例,请参见图5,压电陶瓷11接入交流电的瞬间,转动轴23的输出转速为160r/min,且转动轴23的堵转力矩可达到1.3n
·
m;输出力矩为1.0n
·
m时的输出转速可以达到116.1r/min,同时摩擦件22与定子12间的摩擦界面的能量转换效率大于40%的有效输出力矩范围为0.5n
·
m至1.15n
·
m,输出的效率值为44.29%,输出转速可为126.7r/min,输出力矩可为0.8n
·
m。
48.为了进一步地提高转子21与定子12间的能量转换效率,可通过增加摩擦件22表面上的凹坑织构的面积密度,以增加摩擦件22与定子12间的摩擦力;需要说明的是,摩擦件22上的凹坑织构的面积密度是指摩擦件22表面上的凹坑织构的面积与摩擦件22表面的面积的比值。摩擦件22上的凹坑织构的面积密度可为7.06%,摩擦件22与定子12间的接触界面间等效平均摩擦系数可达到0.34,转动轴23的堵转力矩可达到1.45n
·
m,输出力矩为1.0n
·
m时的输出转速提高到121.3r/min,最高能量转换效率可达到47.12%,效率值大于40%的有效输出力矩的范围为0.5n
·
m至1.15n
·
m,进而可使超声电机的综合输出性能得到进一步地提升。
49.进一步地,请参见图2至图3,定子12配置有定子主体122以及多个定子齿123,定子齿123凸出设置于定子主体122靠近转子21的一侧,且的定子齿123围设形成一圆环状;转子21配置有转子主体212以及抵接环213,转子主体212可设置为圆状,以便于在行波的驱动下做转动;抵接环213凸设于转子主体212的边缘处,且与圆环状的定子齿123对应设置;进而
以使抵接环213通过摩擦件22抵压于定子齿123,定子齿123的设置可调节定子12的固有模态,获得与压电陶瓷11较佳的共振频率以及使定子12达到较大的振幅,以提高行波的能量。
50.移动组件20还包括轴承25,轴承25套设在主体轴231的周侧;壳体40开设有容置槽42,轴承25位于容置槽42内,轴承25的一端与挡位板232抵接,另一端与壳体40抵接;同时轴承25与主体轴231过盈配合,轴承25可对主体轴231起到径向支撑以及定位的作用;同时可减小主体轴231的周侧与第一通孔41间的摩擦力,进而可利用轴承25的转动,以使转动轴23较为顺畅的转动,进而可提高转动轴23的输出效率;进一步地,容置槽42的设置可减小容纳空间50的尺寸,以使产生超声电机小型化,同时减小超声电机的重量。
51.进一步地,底座30上也可开设有置物槽32,且置物槽32的开口形状为圆状,且置物槽32的轴线与第四通孔31的轴线共线;进而可使轴承25安装于主体轴231的周侧,且与主体轴231过盈配合,轴承25放置于置物槽32内,且轴承25的周侧与置物槽32的内壁间过盈配合,以使轴承25较为稳固地安装于置物槽32内,进而轴承25可对主体轴231起到径向支撑以及定位的作用;传统驱动方式包括直流电机、传动机构以及减速机构,超声电机相较于传统驱动方式,略去了传动机构以及减速机构,可实现转动轴23的直接驱动待驱动件,进而可减小驱动系统的体积以及重量,以提高超声电机的续航能力;同时也可提高超声电机的传动效率;进一步地,可降低超声电机产生的误差以及延时,以提高超声电机的响应速度。
52.第二方面,请参见图6至图7,本技术提供了一种海洋环境监测装置,海洋环境监测装置包括监测组件以及上述的超声电机100,监测组件包括遥感载荷61、基座62、横滚框架63、俯仰框架64以及方位框架65,遥感载荷61固定安装于基座62,安装方式可为粘接、卡接以及螺接等,具体可根据实际的情况进行设置。
53.基座62可设置为框架结构,横滚框架63沿x轴安装在基座62上,绕x轴旋转;俯仰框架64沿y轴安装在横滚框架63上,绕y轴旋转;方位框架65沿z轴安装在俯仰框架64上,绕z轴旋转;x轴、y轴以及z轴两两相互垂直,进而可使横滚框架63和俯仰框架64跟踪海洋的地理水平,方位框架跟踪飞行航向。
54.超声电机100可包括第一超声电机、第二超声电机以及第三超声电机,第一超声电机安装于基座62,且第一超声电机的转动轴23与横滚框架63连接,第一超声电机驱动横滚框架63绕x轴旋转,调整横滚框架63的转动角度,以控制海洋环境监测装置x轴方向的自由度;第二超声电机安装于横滚框架63,且第二超声电机的转动轴23与俯仰框架64连接,第二超声电机驱动俯仰框架64绕y轴旋转,调整俯仰框架64的转动角度,以控制海洋环境监测装置y轴方向的自由度;第三超声电机安装于俯仰框架64,且第三超声电机的转动轴23与方位框架65连接,第三超声电机驱动方位框架65绕z轴旋转,调整方位框架65的转动角度,以控制海洋环境监测装置z轴方向的自由度。
55.横滚框架63、俯仰框架64以及方位框架65三者的回转轴正交于一点,以使底座30的位置相对稳定,进而使安装在底座30上的遥感载荷61的位置稳定,便于安装在底座30的遥感载荷61进行海洋环境的监测。
56.相较于传统的海洋环境监测装置的驱动系统:直流电机、传动机构以及减速机构的驱动方式,超声电机100的驱动更为直接,进而可有效提高驱动精度以及响应速度。
57.同时摩擦件22的材料为改性聚酰亚胺基复合材料,改性聚酰亚胺基复合材料具备
较好的热稳定性以及抗腐蚀性,可有效改善海洋环境监测装置的环境适应性以及应用范围。
58.在一些实施例中,遥感载荷也可为相应的功能监测组件,也可进行海域测绘、海洋参数反演、海事监管和突发情况应急响应等。
59.本实施例的附图中相同或相似的标号对应相同或相似的部件;在本技术的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本技术和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
60.以上仅为本技术的较佳实施例而已,并不用以限制本技术,凡在本技术的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本技术的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献