一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种梯度质子交换膜燃料电池膜电极及其制备方法和应用与流程

2022-02-22 03:49:02 来源:中国专利 TAG:


1.本发明属于燃料电池领域,尤其涉及一种梯度质子交换膜燃料电池膜电极及其制备方法和应用。


背景技术:

2.质子交换膜燃料电池(pemfc)具有高功率密度和能量转换效率,能够在低温下启动,并且环境友好,因此被视为电动汽车的理想动力源。然而要想商业化,首先需要解决成本和性能的问题。质子交换膜燃料电池的核心部件为膜电极,膜电极主要由气体扩散层、质子交换膜、催化层组成。其中催化层中,降低铂用量,提高铂催化剂的利用率对降低燃料电池成本至关重要。常规制备膜电极的催化剂层中催化剂是呈均匀分布的,催化剂层与质子交换膜的材料差异较大,因此普通方法制备的膜电极存在较大的界面效应。同时气体在催化层的分布不均匀,若铂催化剂均匀分布则会在催化层内造成催化剂浪费,降低了铂催化剂的利用率。
3.cn108461788b公开了一种氢氧燃料电池用膜电极的制备方法,其包括如下步骤:s1.制备催化剂浆液1和催化剂浆液2;s2.将催化剂浆液1喷涂于质子交换膜形成第一催化层;s3.在第一催化层表面喷涂催化剂浆液2形成第二催化层;其中,催化剂浆液1中催化剂1的贵金属含量高于催化剂浆液2中催化剂2的贵金属含量,制备催化剂浆液2中催化剂2与质子交换膜溶液的质量比低于制备催化剂浆液1中催化剂1与质子交换膜溶液的质量比,催化剂浆液2的喷涂速度高于催化剂浆液1,催化剂浆液2中的固含量低于催化剂浆液1。其制备的膜电极催化层具有成分和结构双重梯度,使得氢气、氧气、质子和电子在催化层内部传输较为流畅,但其使用铂量较高,铂的催化效率较低导致成本较高。
4.cn111584880a公开了一种低铂质子交换膜燃料电池膜电极及其制备方法。其提供的膜电极的催化层采用多孔材料及填充在多孔材料内的催化剂制备而成,通过调节膜电极催化层结构来降低铂使用量,采用部分结构有序化工艺,调节膜电极催化层结构来降低铂使用量,降低燃料电池成本。其提供的膜电极相对于传统膜电极,因采用部分有序化结构,能够有效提高催化剂利用率,降低催化剂载量,克服膜电极溶胀问题,易于放大,有利于批量生产。但是由于其采用多孔材料结构导致其制备的膜电极存在较大的界面效应,同时气体在催化层的分布不均匀,铂催化剂均匀分布则会在催化层内造成催化剂浪费,降低了铂催化剂的利用率。
5.以上方案均存在有铂催化效率低、利用率差、制备成本较高或气体分布不均匀等问题,因此,开发一种铂催化效率高,成本低的质子交换膜燃料电池膜电极是十分必要的。


技术实现要素:

6.本发明的目的在于提供一种梯度质子交换膜燃料电池膜电极及其制备方法和应用,本发明所述梯度质子交换膜燃料电池膜电极对催化层进行梯度设计,阴、阳极催化剂层中铂的质量分数、离聚物质量分数和ew值分段分布,提高了铂的利用率,降低铂含量,并适
用于低湿和大电流密度工况,降低生产成本。
7.为达到此发明目的,本发明采用以下技术方案:
8.第一方面,本发明提供了一种梯度质子交换膜燃料电池膜电极,所述梯度质子交换膜燃料电池膜电极包括阴极催化层和阳极催化层;
9.所述阴极催化层包括第一催化层、第二催化层及第三催化层,所述第三催化层的浆液包含碳纳米材料;所述阳极催化层包括第一催化层和第二催化层。
10.本发明所述梯度质子交换膜燃料电池膜电极在阴极的第三催化层中增添碳纳米材料,可有效降低催化层和基底层之间的接触电阻,增加膜电极催化层内部的气体传输通道,从而有助于提高铂的利用率,使制得的电池电压得到显著提高。
11.优选地,所述阴极和阳极的第一催化层浆液中均含有催化剂、去离子水、离聚物及分散剂。
12.优选地,所述催化剂包括铂碳催化剂和/或铂合金催化剂。
13.优选地,所述第一催化层浆液中,催化剂、去离子水、离聚物及分散剂的质量比为1:(76~200):(1.1~3):(790~920),例如1:76:1.1:790、1:200:3:920、1:80:2.5:810、1:145:2.3:850或1:100:2.7:880等。
14.优选地,所述阳极的催化剂中铂含量为20~50wt%,例如:20wt%、25wt%、30wt%、40wt%或50wt%等。
15.优选地,所述阴极的催化剂中铂含量为20~70wt%,例如:20wt%、30wt%、40wt%、50wt%、60wt%或70wt%等。
16.优选地,所述离聚物的质量浓度为1~20%,例如:1%、5%、10%、15%、或20%等。
17.优选地,所述阴极和阳极的第二催化层浆液中均含有催化剂、去离子水、离聚物及分散剂。
18.优选地,所述催化剂包括铂碳催化剂和/或铂合金催化剂。
19.优选地,所述第二催化层浆液中,催化剂、去离子水、离聚物及分散剂的质量比为1:(76~200):(1.1~3):(790~920),例如1:76:1.1:790、1:200:3:920、1:80:2.5:810、1:145:2.3:850或1:100:2.7:880。
20.优选地,所述阳极的催化剂中铂含量为20~50wt%,例如:20wt%、25wt%、30wt%、40wt%或50wt%等。
21.优选地,所述阴极的催化剂中铂含量为20~70wt%,例如:20wt%、30wt%、40wt%、50wt%、60wt%或70wt%等。
22.优选地,所述离聚物的质量浓度为1~20%,例如:1%、5%、10%、15%或20%等。
23.优选地,所述阴极的第三催化层浆液中还含有催化剂、去离子水、离聚物、分散剂及碳纳米材料。
24.优选地,所述催化剂包括铂碳催化剂和/或铂合金催化剂。
25.优选地,所述第三催化层浆液中所述催化剂、去离子水、离聚物、分散剂及碳纳米材料的质量比为1:(76~200):(1.1~3):(790~920):(0.71~5.3),例如1:76:1.1:790:0.71、1:200:3:920:0.92、1:80:2.5:810:2.5、1:145:2.3:850:3或1:100:2.7:880:5.3。
26.优选地,所述阳极的催化剂中铂含量为20~50wt%,例如:20wt%、25wt%、30wt%、40wt%或50wt%等。
27.优选地,所述阴极的催化剂中铂含量为20~70wt%,例如:20wt%、30wt%、40wt%、50wt%、60wt%或70wt%等。
28.优选地,所述离聚物的质量浓度为1~20%,例如:1%、5%、10%、15%或20%等。
29.优选地,所述碳纳米材料包括碳纳米管、石墨烯或碳黑中的任意一种或至少两种的组合。
30.本发明所述炭黑包括vulcan xc-72r和/或ketjen碳黑。
31.优选地,所述阴极第一催化层的浆液固含量中铂的百分数《所述阴极第三催化层的浆液固含量中铂的百分数《所述阴极第二催化层的浆液固含量中铂的百分数。
32.优选地,所述阴极中,第一催化层的浆液固含量中铂的百分数为11.8%~31.9%,第二催化层的浆液固含量中铂的百分数为21.7%~53.8%,第三催化层的浆液固含量中铂的百分数为10%~37.5%。
33.优选地,所述阴极第三催化层的浆液固含量中碳与离聚物的比例《所述阴极第二催化层的碳与离聚物的比例《所述阴极第一催化层的浆液碳与离聚物的比例。
34.优选地,所述阴极中,第一催化层的浆液碳与离聚物的比例为1.2~2.2:1,第二催化层的浆液碳与离聚物的比例为0.8~1.4:1,第三催化层的浆液碳与离聚物的比例为0.3~1:1。
35.优选地,所述阴极第一催化层和第二催化层的浆液离聚物ew值《所述阴极第三催化层的浆液离聚物ew值。
36.优选地,所述阴极中,第一、二催化层的浆液离聚物ew值为900~1050,第三催化层的浆液离聚物ew值为1050~1200。
37.优选地,所述阳极第一催化层的浆液固含量中铂的百分数《所述阳极第二催化层的浆液固含量中铂的百分数。
38.优选地,所述阳极中,第一催化层的浆液固含量中铂的百分数为10.2%~22.2%,第二催化层的浆液固含量中铂的百分数为12.5%~31.3%。
39.优选地,所述阳极第二催化层的浆液碳与离聚物的比例《所述阳极第一催化层的浆液碳与离聚物的比例。
40.优选地,所述阳极中,第一催化层的浆液碳与离聚物的比例为1.2~2,第二催化层的浆液碳与离聚物的比例为0.5~1.2。
41.优选地,所述阳极第二催化层的浆液离聚物ew值《所述阳极第一催化层的浆液离聚物ew值。
42.优选地,所述阳极中,第一催化层的浆液离聚物ew值为800-900,第二催化层的浆液离聚物ew值为720-800。
43.本发明对铂催化剂的用量进行梯度设计,形成阴极三段阳极两段反应梯度催化层,进而可以提高了铂的利用率,节约成本。
44.本发明对离聚物进行梯度设计,能够有效降低膜电极的界面效应,并增大膜电极与催化剂层的结合力。
45.具体的,本发明中所述电极的阴极和阳极第一催化层分布在质子交换膜两侧,其离聚物含量最高,铂含量较低,有效降低了质子交换膜与催化层界面两侧的成分差异,减小了膜电极的界面效应,并能增大膜电极与催化层的界面结合力,靠近质子交换膜侧的催化
层中气体浓度较低,所以催化剂含量较低,将第二层中没有反应完全的气体在第一层中进一步反应;第二催化层中铂含量最高,离聚物含量和ew值降低,可以防止过多的粘结剂包覆铂造成催化层利用率降低,将进来的反应气体尽快反应,且低ew值的离聚物可以在低湿工况起到保水作用,防止阳极干燥,使膜电极高性能运行。
46.本发明中所述电极的阴极还有第三层浓度的催化层,该第三催化层中铂含量较第二催化层降低,并降低离聚物含量,提高离聚物ew值,能防止反应气体一进来浓度过高反应过快引起水淹,并通过进一步增添碳纳米材料,降低催化层和基底层之间的接触电阻,增加膜电极催化层内部的气体传输通道,促进气体扩散,由此形成一个阴极三段阳极两段梯度的催化层,提高了铂的利用率。
47.第二方面,本发明提供了一种如第一方面所述梯度质子交换膜燃料电池膜电极的制备方法,所述制备方法包括:
48.(1)制备待喷涂浆液;
49.(2)喷涂制得膜电极。
50.优选地,步骤(1)所述待喷涂浆液包括用于形成阴极的第一层催化剂浆液、第二层催化剂浆液及第三层催化剂浆液和用于形成阳极的第一层催化剂浆液及第二层催化剂浆液。
51.优选地,步骤(2)所述喷涂的装置包括超声喷涂机。
52.优选地,所述喷涂的温度为50~80℃,例如:50℃、55℃、60℃、65℃、70℃、75℃或80℃等。
53.优选地,所述阴极的催化剂浆液总喷涂质量为0.12~0.18mg/cm2,例如:0.12mg/cm2、0.13mg/cm2、0.15mg/cm2、0.16mg/cm2或0.18mg/cm2等。
54.优选地,所述阳极的催化剂浆液总喷涂质量为0.03~0.06mg/cm2,例如:0.03mg/cm2、0.04mg/cm2、0.05mg/cm2、0.06mg/cm2等。
55.作为本发明的优选方案,所述制备方法包括以下步骤:
56.(a)制备第一层催化剂浆液:取铂含量为40%~70%的铂碳催化剂,与去离子水、1~20%的离聚物及分散剂混合均匀后再分散,获得待喷涂催化剂墨水,所述分散的速度为10000~30000r/min,所述分散的时间为20~40min;
57.(b)制备第二层催化剂浆液:取铂含量为40%~70%的铂碳催化剂,与去离子水、1~20%的离聚物及分散剂混合均匀后再分散,获得待喷涂催化剂墨水,所述分散的速度为10000~30000r/min,所述分散的时间为20~40min;
58.(c)制备第三层催化剂浆液:取铂含量为40%~70%的铂碳催化剂,与去离子水、碳纳米材料、3~7%的离聚物及分散剂混合均匀后再分散,获得待喷涂催化剂墨水,所述分散的速度为10000~30000r/min,所述分散的时间为20~40min;
59.(d)利用超声喷涂机将步骤(a)、步骤(b)和步骤(c)制备的催化剂浆液,在50~80℃下分别按照催化浆液层数顺序喷涂于质子交换膜一侧,作为膜电极的阴极;另一侧喷涂步骤(a)制备的第一层催化剂浆液和步骤(b)制备的第二层催化剂浆液作为阳极;其中阴极的催化剂浆液总喷涂质量为0.12~0.18mg/cm2,阳极的催化剂浆液总喷涂质量为0.03~0.06mg/cm2;在同样的喷涂温度和真空吸附条件下烘干2~10min,得到所述梯度质子交换膜燃料电池膜电极。
60.第三方面,本发明还提供了一种梯度质子交换膜燃料电池,所述梯度质子交换膜燃料电池包含如第一方面所述的梯度质子交换膜燃料电池膜电极。
61.相对于现有技术,本发明具有以下有益效果:
62.1、本发明对铂催化剂进行梯度设计,形成阴极三段阳极两段反应梯度催化层,提高了铂的利用率、降低铂用量、降低成本。
63.2、本发明对离聚物进行梯度设计,能够有效降低膜电极的界面效应,并能增大膜电极与催化剂层的结合力,同时利用不同ew值与水的结合力不同进行阳极保水、阴极输水设计,使膜电极适用于大电流密度和低湿工况。
64.3、本发明在第三催化层中增添碳纳米材料,降低催化层和基底层之间的接触电阻,增加膜电极催化层内部的气体传输通道。
附图说明
65.图1是发明实施例1所述膜电极的结构示意图。
具体实施方式
66.下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
67.实施例1
68.本实施例提供了一种梯度质子交换膜燃料电池膜电极,包括以下步骤:
69.阳极催化剂浆液:
70.(a)制备第一层催化剂浆液,称取100mg铂含量为30%的铂碳催化剂,加入25g去离子水,然后逐滴加入含有35mg离聚物(浓度为3%、ew值为800)的离聚物溶液,使碳:聚合物=1:0.5,冰浴超声均匀后逐滴加入28g异丙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切机进行强力分散40min,获得待喷涂催化剂墨水,分散速度为20000r/min。其中浆液固含量中铂的百分数22.2%。
71.(b)制备第二层催化剂浆液,称取100mg铂含量为50%的铂碳催化剂,加入25g去离子水,然后逐滴加入含有60mg离聚物(浓度为3%、ew值为720)的离聚物溶液,使碳:聚合物=1:1.2,冰浴超声均匀后逐滴加入28g异丙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切机进行强力分散40min,获得待喷涂催化剂墨水,分散速度为30000r/min。其中浆液固含量中铂的百分数31.3%。
72.阴极催化剂浆液:
73.(a)制备第一层催化剂浆液,称取100mg铂含量为60%的铂碳催化剂,加入25g去离子水,然后逐滴加入含有56mg离聚物(浓度为5%、ew值为900)的离聚物溶液,使碳:聚合物=1:1.4,冰浴超声均匀后逐滴加入28g异丙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切机进行强力分散40min,获得待喷涂催化剂墨水,分散速度为20000r/min。其中浆液固含量中铂的百分数38.5%
74.(b)制备第二层催化剂浆液,称取100mg铂含量为70%的铂碳催化剂,加入25g去离子水,然后逐滴加入含有30mg离聚物(浓度为5%、ew值为1000)的离聚物溶液,使碳:聚合物=1:1.2,冰浴超声均匀后逐滴加入28g异丙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切
机进行强力分散40min,获得待喷涂催化剂墨水,分散速度为30000r/min。其中浆液固含量中铂的百分数53.8%
75.(c)制备第三层催化剂浆液,称取100mg铂含量为50%的铂碳催化剂,8mg碳纳米管,加入25g去离子水,然后逐滴加入含有35mg离聚物(浓度为5%、ew值为1050)的离聚物溶液,然后逐滴加入500mg 5%ew值为1050的聚合物,使碳:聚合物=1:0.8,冰浴超声均匀后逐滴加入28g异丙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切机进行强力分散30min,获得待喷涂催化剂墨水,分散速度为30000r/min。其中浆液固含量中铂的百分数37.5%。
76.(d)利用超声喷涂机将上述制备的第一层催化剂浆液在80℃下喷涂于质子交换膜一侧,将所述第二层催化剂浆液喷涂于第一层催化剂浆液上,将所述第三层催化剂浆液喷涂在所述第二层催化剂浆液上,作为膜电极的阴极;另一侧喷涂制备的第一层催化剂浆液,在第一层催化剂浆液上喷涂第二层催化剂浆液作为阳极。其中阴极喷涂质量为0.18mg/cm2,阳极喷涂质量为0.06mg/cm2;在同样的喷涂温度和真空吸附条件下进行烘干2min,得到所述梯度质子交换膜燃料电池膜电极。所述膜电极的结构示意图如图1所示。
77.实施例2
78.本实施例提供了一种梯度质子交换膜燃料电池膜电极,包括以下步骤:
79.阳极催化剂浆液:
80.(a)制备第一层催化剂浆液,称取100mg铂含量为20%的铂碳催化剂,加入25g去离子水,然后逐滴加入含有96mg离聚物(浓度为1%、ew值为900)的离聚物溶液,使碳:聚合物=1:1.2,冰浴超声均匀后逐滴加入28g异丙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切机进行强力分散40min,获得待喷涂催化剂墨水,分散速度为20000r/min。其中浆液固含量中铂的百分数10.2%。
81.(b)制备第二层催化剂浆液,称取100mg铂含量为30%的铂碳催化剂,加入25g去离子水,然后逐滴加入含有140mg离聚物(浓度为1%、ew值为800)的离聚物溶液,使碳:聚合物=1:2,冰浴超声均匀后逐滴加入28g异丙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切机进行强力分散40min,获得待喷涂催化剂墨水,分散速度为30000r/min。其中浆液固含量中铂的百分数12.5%。
82.阴极催化剂浆液:
83.(a)制备第一层催化剂浆液,称取100mg铂含量为50%的铂碳催化剂,加入25g去离子水,然后逐滴加入含有154mg离聚物(浓度为1%、ew值为1050)的离聚物溶液,使碳:聚合物=1:2.2,冰浴超声均匀后逐滴加入28g异丙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切机进行强力分散40min,获得待喷涂催化剂墨水,分散速度为20000r/min。其中浆液固含量中铂的百分数11.8%。
84.(b)制备第二层催化剂浆液,称取100mg铂含量为70%的铂碳催化剂,加入25g去离子水,然后逐滴加入含有84mg离聚物(浓度为1%、ew值为1000)的离聚物溶液,使碳:聚合物=1:1.4,冰浴超声均匀后逐滴加入28g异丙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切机进行强力分散40min,获得待喷涂催化剂墨水,分散速度为30000r/min。其中浆液固含量中铂的百分数21.7%。
85.(c)制备第三层催化剂浆液,称取100mg铂含量为20%的铂碳催化剂,20mg碳纳米管,加入25g去离子水,然后逐滴加入含有80mg离聚物(浓度为1%、ew值为1200)的离聚物溶
液,使碳:聚合物=1:1,冰浴超声均匀后逐滴加入28g异丙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切机进行强力分散30min,获得待喷涂催化剂墨水,分散速度为30000r/min。其中浆液固含量中铂的百分数10%。
86.(d)利用超声喷涂机将上述制备的第一层催化剂浆液在80℃下喷涂于质子交换膜一侧,将所述第二层催化剂浆液喷涂于第一层催化剂浆液上,将所述第三层催化剂浆液喷涂在所述第二层催化剂浆液上,作为膜电极的阴极;另一侧喷涂制备的第一层催化剂浆液,在第一层催化剂浆液上喷涂第二层催化剂浆液作为阳极。其中阴极喷涂质量为0.12mg/cm2,阳极喷涂质量为0.03mg/cm2;在同样的喷涂温度和真空吸附条件下进行烘干2min,得到所述梯度质子交换膜燃料电池膜电极。
87.实施例3
88.本实施例提供了一种梯度质子交换膜燃料电池膜电极,具体制备方法如下:
89.阳极催化剂浆液:
90.(a)制备第一层催化剂浆液,称取25mg铂含量为30%的铂碳催化剂,加入25g去离子水,然后逐滴加入含有24.5mg离聚物(浓度为20%、ew值为820)的离聚物溶液,使碳:聚合物=1:1.4,冰浴超声均匀后逐滴加入28g异丙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切机进行强力分散40min,获得待喷涂催化剂墨水,分散速度为20000r/min。其中浆液固含量中铂的百分数15.2%
91.(b)制备第二层催化剂浆液,称取25mg铂含量为20%的铂碳催化剂,加入25g去离子水,然后逐滴加入含有10mg离聚物(浓度为20%、ew值为740)的离聚物溶液,使碳:聚合物=1:0.5,冰浴超声均匀后逐滴加入28g异丙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切机进行强力分散40min,获得待喷涂催化剂墨水,分散速度为30000r/min。其中浆液固含量中铂的百分数14.3%。
92.阴极催化剂浆液:
93.(a)制备第一层催化剂浆液,称取25mg铂含量为30%的铂碳催化剂,加入25g去离子水,然后逐滴加入含有21mg离聚物(浓度为20%、ew值为940)的离聚物溶液,使碳:聚合物=1:1.2,冰浴超声均匀后逐滴加入28g异丙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切机进行强力分散40min,获得待喷涂催化剂墨水,分散速度为20000r/min。其中浆液固含量中铂的百分数16.3%。
94.(b)制备第二层催化剂浆液,称取25mg铂含量为40%的铂碳催化剂,加入25g去离子水,然后逐滴加入含有12mg离聚物(浓度为20%、ew值为1000)的离聚物溶液,使碳:聚合物=1:0.8,冰浴超声均匀后逐滴加入28g异丙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切机进行强力分散40min,获得待喷涂催化剂墨水,分散速度为30000r/min。其中浆液固含量中铂的百分数27.0%。
95.(c)制备第三层催化剂浆液,称取25mg铂含量为20%的铂碳催化剂,1mg碳纳米管,加入25g去离子水,然后逐滴加入含有6mg离聚物(浓度为20%、ew值为1100)的离聚物溶液,使碳:聚合物=1:0.3,冰浴超声均匀后逐滴加入28g异丙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切机进行强力分散30min,获得待喷涂催化剂墨水,分散速度为30000r/min。其中浆液固含量中铂的百分数15.6%。
96.(d)利用超声喷涂机将上述制备的第一层催化剂浆液在50℃下喷涂于质子交换膜
一侧,将所述第二层催化剂浆液喷涂于第一层催化剂浆液上,将所述第三层催化剂浆液喷涂在所述第二层催化剂浆液上,作为膜电极的阴极;另一侧喷涂制备的第一层催化剂浆液,在第一层催化剂浆液上喷涂第二层催化剂浆液作为阳极。其中阴极喷涂质量为0.16mg/cm2,阳极喷涂质量为0.4mg/cm2;在同样的喷涂温度和真空吸附条件下进行烘干2min,得到所述梯度质子交换膜燃料电池膜电极。
97.实施例4
98.本实施例提供了一种梯度质子交换膜燃料电池膜电极,具体制备方法如下:
99.阳极催化剂浆液:
100.(a)制备第一层催化剂浆液,称取25mg铂含量为50%的铂碳催化剂,加入25g去离子水,然后逐滴加入含有23.5mg离聚物(浓度为15%、ew值为800)的离聚物溶液,使碳:聚合物=1:1.4,冰浴超声均匀后逐滴加入28g异丙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切机进行强力分散40min,获得待喷涂催化剂墨水,分散速度为20000r/min。其中浆液固含量中铂的百分数15.2%。
101.(b)制备第二层催化剂浆液,称取25mg铂含量为40%的铂碳催化剂,加入25g去离子水,然后逐滴加入含有10mg离聚物(浓度为15%、ew值为720)的离聚物溶液,使碳:聚合物=1:0.5,冰浴超声均匀后逐滴加入28g异丙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切机进行强力分散40min,获得待喷涂催化剂墨水,分散速度为30000r/min。其中浆液固含量中铂的百分数14.3%。
102.阴极催化剂浆液:
103.(a)制备第一层催化剂浆液,称取20mg铂含量为50%的铂钴合金催化剂,加入15g去离子水,然后逐滴加入含有15mg离聚物(浓度为15%、ew值为1000)的离聚物溶液,使碳:聚合物=1:1.5,冰浴超声均匀后逐滴加入80g乙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切机进行强力分散20min,获得待喷涂催化剂墨水,分散速度为10000r/min。其中浆液固含量中铂的百分数28.6%。
104.(b)制备第二层催化剂浆液,称取20mg铂含量为50%的铂钴合金催化剂,加入15g去离子水,然后逐滴加入含有10mg离聚物(浓度为15%、ew值为1050)的离聚物溶液,使碳:聚合物=1:1,冰浴超声均匀后逐滴加入80g乙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切机进行强力分散20min,获得待喷涂催化剂墨水,分散速度为40000r/min。其中浆液固含量中铂的百分数33.3%。
105.(c)制备第三层催化剂浆液,称取20mg铂含量为50%的铂钴合金催化剂,17.5mg石墨烯,加入15g去离子水,然后逐滴加入含有6mg离聚物(浓度为15%、ew值为1100)的离聚物溶液,使碳:聚合物=1:0.6,冰浴超声均匀后逐滴加入80g乙醇,冰浴超声搅拌混合均匀。采用高速乳化剪切机进行强力分散40min,获得待喷涂催化剂墨水,分散速度为10000r/min。其中浆液固含量中铂的百分数22.9%。
106.(d)利用超声喷涂机将上述制备的第一层催化剂浆液在50℃下喷涂于质子交换膜一侧,将所述第二层催化剂浆液喷涂于第一层催化剂浆液上,将所述第三层催化剂浆液喷涂在所述第二层催化剂浆液上,作为膜电极的阴极;另一侧喷涂制备的第一层催化剂浆液,在第一层催化剂浆液上喷涂第二层催化剂浆液作为阳极。其中阴极喷涂质量为0.15mg/cm2,阳极喷涂质量为0.05mg/cm2;在同样的喷涂温度和真空吸附条件下进行烘干2min,得到
所述梯度质子交换膜燃料电池膜电极。
107.对比例1
108.本对比例与实施例1区别仅在于阴极喷涂的第三层催化剂浆液中不添加碳纳米管,其他参数和条件与实施例1中完全相同。
109.对比例2
110.本对比例与实施例1区别仅在于阴极和阳极均喷涂制备的第一层催化剂浆液和第二层催化剂浆液,其他参数和条件与实施例1中完全相同。
111.对比例3
112.本对比例与实施例1区别仅在于阴极和阳极均喷涂制备的第一层催化剂浆液,其他参数和条件与实施例1中完全相同。
113.性能测试:
114.在实施例1-4和对比例1-3所述梯度质子交换膜燃料电池膜电极两侧放上碳纸,在0.3mpa,80℃下热压20s,制得质子交换膜燃料电池的膜电极组件。将制得的五层膜电极组件在电池温度为60℃,气体过量系数h2/air=1.5/2.5,湿度为60%,无背压的条件下进行测试,测试结果如表1所示:
115.表1
[0116][0117]
由表1可以看出,由实施例1-4可得,由本发明实施例中制备得到的梯度质子交换膜燃料电池膜电极制备的电池组件在200ma/cm2下电压可以达到0.794v以上,在800ma/cm2下电压可以达到0.724v,在1800ma/cm2下电压可达0.673v以上。
[0118]
由表1可以看出,由实施例1和对比例1对比可得,本发明在第三催化层中增添碳纳米材料,降低了催化层和基底层之间的接触电阻,增加了膜电极催化层内部的气体传输通道,使得电池电压增大。
[0119]
由实施例1和对比例2-3对比可得,本发明对铂催化剂进行梯度设计,形成阴极三段阳极两段反应梯度催化层,提高了铂的利用率、降低铂用量,同时本发明对离聚物进行梯
度设计,能够有效降低膜电极的界面效应,并能增大膜电极与催化剂层的结合力,使得电池电压得到显著提高。
[0120]
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献