一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

用于肿瘤渗透增强性光热与化疗联合使用的阿霉素前药及其制备方法与流程

2022-03-22 22:22:35 来源:中国专利 TAG:


1.本发明属于生物医用高分子聚合物材料技术领域,特别涉及用于肿瘤渗透增强性光热与化疗联合使用的阿霉素前药及其制备方法。


背景技术:

2.纳米药物一度被认为是解决肿瘤化疗的有效途径,因其具有诸如赋予化疗药物靶向性、提高药物溶解度、延长药物在体内的半衰期、降低药物的免疫原性、促进药物的跨细胞运输,等优势。纳米载体的使用在一定程度提升了化疗的治疗效果,然而近年来却出现了重大的质疑,发现很多纳米药物(例如:阿霉素脂质体)虽然能够实现在肿瘤内的有效富集,但对临床治疗效果的提升却并不明显。
3.近几年,有专家提出了纳米材料在体内发挥作用所需要经历的capir理论,即纳米载体在进入体内后需要经历体内长循环(circulation)、肿瘤内富集(accumulation)、肿瘤内部渗透(penetration)、肿瘤细胞内吞(internalization)以及药物释放(drug release)五个阶段,药物的总体利用效率是每一步中利用效率的乘积。因此,只有确保每一步都具有较高的效率才能使纳米载体克服一系列肿瘤复杂环境(例如多药耐药性等),达到较高的药物利用效率。这一理论解释了为何很多纳米药物能够在肿瘤内有效富集却无法取得理想临床效果的原因。
4.一方面,纳米材料在肿瘤内富集与渗透对纳米材料尺寸的需求存在矛盾,长循环时需要较大尺寸,渗透时需要较小尺寸。因此设计尺寸调控纳米材料,使得其在体内长循环至富集时保持较大尺寸,富集后在肿瘤内解体为小尺寸,可以解决次难题。
5.另一方面,药物释放在运送过程与到达细胞内存在矛盾,运送过程需要药物不能从载体中释放,而到达肿瘤细胞内后需要药物快速释放。通过物理包覆的方式包覆的药物往往无法避免运送过程中因扩散而提前进入血液致使产生毒副作用。化学键连接构成药物前药是一种很好的解决上述问题的途径,但是,通常状况下,一般化疗药物前药控释后释放出的可能不是化疗药物本体,会有一定的官能团修饰,这就会致使化疗药物的药效被大幅度降低。


技术实现要素:

6.发明目的:本发明的所要解决的技术问题是提供了用于肿瘤渗透增强性光热与化疗联合使用的阿霉素前药,该前药能够在纳米颗粒在肿瘤部位富集的前提下,增强药物的渗透性进入肿瘤内部提高化疗有效性。
7.本发明的还要解决的技术问题是提供了该阿霉素前药制备方法及其应用。本发明一方面,通过酸响应纳米药物包覆小尺寸dox-光热转换材料,可以实现尺寸调控。另一方面,通过热可逆官能团将dox与光热转化材料共价连接,实现药物的光热控释。同时,通过本发明设计的光热控释阿霉素前药,在光热条件下释放的药物分子为阿霉素本体,不影响阿
霉素的药效。
8.技术方案:为了解决上述技术问题,本发明提供了一种用于肿瘤渗透增强性光热与化疗联合使用的阿霉素(dox)前药,所述阿霉素前药包括载体、负载在载体上的dox-nh-coo-peg-sh和近红外光热转换材料,所述载体是在聚己内酯和聚乙二醇之间引入腙键的纳米载体,所述dox-nh-coo-peg-sh含有氨基甲酸酯。
9.其中,所述载体为ph响应的纳米载体。
10.其中,所述近红外光热转换材料包括金纳米棒或硫化铜纳米材料。
11.本发明内容还包括所述的用于肿瘤渗透增强性光热与化疗联合使用的阿霉素前药的制备方法,包括以下步骤:
12.步骤一、将dox和npc-peg-sh溶解于n,n-二甲基甲酰胺(dmf)中,反应混合物在室温氮气气氛下搅拌,纯化后,制得dox-nh-coo-peg-sh,再利用巯基端连接上近红外光热转换材料,得到dox-光热转换纳米颗粒;
13.步骤二、将羧基化pcl(pcl-cooh)溶于dmf中,然后加入1-乙基-(3-二甲基氨基丙基)碳酰二亚胺(edc)和n-羟基丁二酰亚胺(nhs)催化,使pcl-cooh上的羧基得以活化,然后加入过量的n2h4·
h2o反应过夜,之后在去离子水中透析并冻干,得到phpnn;然后,将醛基化peg(peg-ald)和phpnn混合溶于乙醇中,加热回流,然后在去离子水中透析,冻干,得到ph响应的两亲性共聚物(phpp);
14.步骤三、将phpp和dox-光热转换纳米颗粒溶于二氯甲烷(dcm)中,然后逐滴加入到去离子水中,并将其超声乳化,然后在旋蒸仪中将体系中的dcm去除,过滤,冻干,得到阿霉素前药。
15.其中,所述步骤一中的盐酸dox、npc-peg-sh的摩尔比为1∶(0.8~1.2),npc-peg-sh的分子量为1k~14k da。
16.其中,所述步骤二中的pcl-cooh、edc、nhs、n2h4·
h2o的摩尔比为1∶1∶1∶(2.5~4);phpnn与peg-ald的摩尔比为1∶(0.8~1.2),pcl-cooh的分子量为5k~14k da,peg-ald的分子量为5k~14k da。
17.其中,所述步骤三的dox-光热转换纳米颗粒与phpp的质量比为1∶(4~20);dcm与去离子水的体积比为1∶(5~20)。
18.其中,所述步骤二中的edc和nhs催化为室温2~3小时,加热回流时间为36~48小时。
19.其中,所述步骤三中的冰水中超声乳化10~15分钟。
20.本发明利用肿瘤微环境ph响应的纳米药物载体phpp,将dox-光热转换纳米颗粒包覆在phpp中。当纳米药物到达肿瘤后会因其微环境较低的ph条件而使得phpp裂解,纳米材料解体,释放出dox-光热转换纳米颗粒。小尺寸的dox-光热转换纳米颗粒具有更好的肿瘤穿透效果,能够渗透到肿瘤深处。在近红外光照下,光热转化材料可以释放热量,起到光热治疗的效果;同时热量会致使dox-光热转换纳米颗粒中的氨基甲酸酯水解,释放出dox。进而实现肿瘤穿透增强的光热与化疗联合治疗,这样可以有效解决背景技术中提出的问题。
21.本发明的反应原理如下:
22.dox-nh-coo-peg-sh的合成:
[0023][0024]
本发明将dox-纳米光热转换材料包覆在phpp中,到达肿瘤部位后释放的出小尺寸dox-纳米光热转换材料能够更有效地渗透到肿瘤内部。因此,该纳米药物具有智能尺寸调控策略,在血液中具有较大尺寸增强长循环,肿瘤内解体为较小尺寸的dox-光热转换纳米颗粒以增强渗透,通过此只能纳米尺寸策略可以解决纳米材料在体内长循环与富集之间的尺寸矛盾。
[0025]
其次,在近红外光照射下,渗透到肿瘤内部的dox-纳米光热转换材料在近红外照射下可以产生热量,具有光热治疗效果。同时,所产生的热量也会致使dox-纳米光热转换材料中的氨基甲酸酯水,释放出dox,起到化疗效果。进而实现光热与化疗联合治疗。
[0026]
其中,dox-纳米光热转换材料先是由dox和npc-peg-sh合成dox-nh-coo-peg-sh,这一步骤会产生受热分解的氨基甲酸酯,再在dox-nh-coo-peg-sh巯基端连接上光热转换材料。dox-光热转换材料在近红外光照射下产生热量,氨基甲酸酯受热分解生成dox。具体原理如下:
[0027]
首先,如图1,近红外光照下,光热转换材料产热热量,热量致使氨基甲酸酯键分解,生成阿霉素异氰酸酯(dox-n=c=o);
[0028]
然后,阿霉素异氰酸酯在肿瘤细胞内过量水的作用下水解,生成阿霉素。所产的阿霉素没有任何官能团修饰。
[0029][0030]
有益效果:本发明和现有技术相比,具有如下显著优点:首先纳米药物在肿瘤部位富集的前提下,dox能更好地穿透进入肿瘤内部发挥药效,提高了药物利用率及化疗的有效性;其次,dox与作为载体的光热转换材料共价连接,避免提前释放,到达肿瘤细胞后在近红外光照下可以释放未经任何修饰的dox,充分发挥dox的化疗效果;再次,近红外光照射下光热会杀死部分肿瘤细胞,将光热治疗和化疗联合使用更能有效对抗肿瘤有。
附图说明
[0031]
图1为dox-光热转换纳米颗粒作用原理图;
[0032]
图2为实施例1dox-光热转换纳米颗粒近红外光照射后1h nmr图像;
[0033]
图3为实施例1制备的dox-光热转换材料与对比例1制备的dox-da-阿霉素前药对肿瘤细胞的抑制效果;
[0034]
图4经历不同治疗组的荷瘤小鼠肿瘤体积对时间变化情况。
具体实施方式
[0035]
下面结合具体实施方式,进一步阐述本发明。
[0036]
实施例1
[0037]
1)dox-光热转换纳米颗粒的制备:将0.1mmol盐酸dox和0.1mmolnpc-peg-sh(分子量1kda)溶解于3ml dmf中,反应混合物在室温氮气气氛下搅拌18小时。纯化后,制得dox-nh-coo-peg-sh。再利用巯基端连接上20mg近红外光热转换材料硫化铜,得到dox-光热转换纳米颗粒;
[0038]
2)phpp纳米载体的制备:将0.1molpcl-cooh(分子量11.4kda)溶于n,n-二甲基甲酰胺(dmf)中,然后加入相同摩尔量的edc和nhs,室温下反应2~3小时使pcl-cooh上的羧基得以活化,然后加入0.3mmol的n2h4·
h2o反应过夜。之后在去离子水中透析并冻干,得到phpnn。peg-ald(分子量5kda)和phpnn以等摩尔量混合溶于乙醇中,加热回流48小时。然后在去离子水中透析,冻干,得到phpp;
[0039]
3)阿霉素前药的制备:将50mg phpp,8mg dox-光热转换纳米颗粒溶于5ml dcm中,然后逐滴加入到50ml去离子水中(35℃),并将其超声乳化10min,然后在旋蒸仪中将体系中的dcm去除,过滤,冻干,筛选150nm的纳米药物粉末。
[0040]
实施例2
[0041]
1)dox-光热转换纳米颗粒的制备:将0.1mmol盐酸dox和0.09mmolnpc-peg-sh(分子量5k da)溶解于3ml dmf中,反应混合物在室温氮气气氛下搅拌18小时。纯化后,制得dox-nh-coo-peg-sh。再利用巯基端连接上30mg近红外光热转换材料金纳米棒,得到dox-光热转换纳米颗粒;
[0042]
2)phpp纳米载体的制备:将0.1mol pcl-cooh(分子量10k da)溶于n,n-二甲基甲酰胺(dmf)中,然后加入相同摩尔量的edc和nhs,室温下反应2~3小时使pcl-cooh上的羧基得以活化,然后加入0.25mmol n2h4·
h2o反应过夜。之后在去离子水中透析并冻干,得到phpnn。peg-ald(分子量2k da)和phpnn以等摩尔量混合溶于乙醇中,加热回流48小时。然后在去离子水中透析,冻干,得到phpp;
[0043]
3)阿霉素前药的制备:将50mg phpp,10mg dox-光热转换纳米颗粒溶于5mldcm中,然后逐滴加入到40ml去离子水中(35℃),并将其超声乳化10min,然后在旋蒸仪中将体系中的dcm去除,过滤,冻干,筛选100nm的纳米药物粉末。
[0044]
实施例3
[0045]
1)dox-光热转换纳米颗粒的制备:将0.1mmol盐酸dox和0.11mmol npc-peg-sh(分子量8kda)溶解于3ml dmf中,反应混合物在室温氮气气氛下搅拌18小时。纯化后,制得dox-nh-coo-peg-sh,再利用巯基端连接上40mg近红外光热转换材料硫化铜,得到dox-光热转换
纳米颗粒;
[0046]
2)phpp纳米载体的制备:将0.1mmol pcl-cooh(分子量5k da)溶于dmf中,然后加入相同摩尔量的edc和nhs,室温下反应2~3小时是pcl-cooh上的羧基得以活化,然后加入0.4mmol n2h4·
h2o反应过夜。之后在去离子水中透析并冻干,得到phpnn。peg-ald(分子量5k da)和phpnn以摩尔量比1∶1.1混合溶于乙醇中,加热回流48小时。然后在去离子水中透析,冻干,得到phpp。
[0047]
3)阿霉素前药的制备:将50mg phpp,10mg dox-光热转换纳米颗粒溶于5ml dcm中,然后逐滴加入到60ml去离子水中(35℃),并将其超声乳化10min,然后在旋蒸仪中将体系中的dcm去除,过滤,冻干,筛选80nm的纳米药物粉末。
[0048]
对比例1
[0049]
制备非可逆释放dox的dox-光热转换纳米颗粒以及非可逆阿霉素前药
[0050]
1)非可逆释放dox的dox-da-光热转换纳米颗粒的制备:将0.078mmoldox与0.1mmol呋喃甲酸在0.1mmol edc和0.1mmol nhs的催化下反应24h,纯化后得到dox-呋喃。取0.05mmol dox-呋喃与0.05mmol马来酰亚胺基聚乙二醇巯基(mal-peg-sh,mw~2000da)溶于dmf中充分搅拌48h,纯化后得到热可裂解的dox-da-peg-sh。根据已有知识,dox-da-peg-sh受热会分解为dox-呋喃。再利用巯基端连接上近红外光热转换材料硫化铜,得到dox-da-光热转换纳米颗粒;
[0051]
2)phpp纳米载体的制备:将0.1mmol pcl-cooh(分子量11.4k da)溶于n,n-二甲基甲酰胺(dmf)中,然后加入相同摩尔量的edc和nhs,室温下反应2小时是pcl-cooh上的羧基得以活化,然后加入0.3mmol n2h4·
h2o反应过夜。之后在去离子水中透析并冻干,得到phpnn。peg-ald(分子量5k da)和phpnn以等摩尔量混合溶于乙醇中,加热回流48小时。然后在去离子水中透析,冻干,得到phpp;
[0052]
3)非可逆阿霉素前药的制备:将50mg phpp,10mgdox-da-光热转换纳米颗粒溶于5ml dcm中,然后逐滴加入到50ml去离子水中(35℃),并将其超声乳化10min,然后在旋蒸仪中将体系中的dcm去除,过滤,冻干,筛选150nm的纳米药物粉末。
[0053]
对比例2
[0054]
制备不具酸响应特性的两亲性共聚物以及不具备尺寸调控的纳米药物
[0055]
1)dox-光热转换纳米颗粒的制备(按实施例1):将0.078mmol dox和0.069mmol npc-peg-sh溶解于3ml dmf中,反应混合物在室温氮气气氛下搅拌18小时。纯化后,制得dox-nh-coo-peg-sh。再利用巯基端连接上近红外光热转换材料硫化铜,得到dox-光热转换纳米颗粒;
[0056]
2)不具酸响应特性的两亲性共聚物(pcl-peg)的制备:将0.1mmol pcl-cooh(分子量11.4k da)和mpeg-nh2(分子量5k da)以等摩尔量混合溶于dmf中,然后加入相同摩尔量的edc和nhs,室温下反应24小时,然后在去离子水中透析,冻干,得到不具酸响应特性的pcl-peg;
[0057]
3)不具备尺寸调控的阿霉素前药的制备:将50mg pcl-peg,8mgdox-光热转换纳米颗粒溶于5ml dcm中,然后逐滴加入到50ml去离子水中(35℃),并将其超声乳化10min,然后在旋蒸仪中将体系中的dcm去除,过滤,冻干,筛选150nm的不具备尺寸调控的纳米药物。
[0058]
实施例4性能测试
[0059]
将上述实施例1制备的纳米药物经近红外光照10分钟后,离心、提纯出释放的化合物。由图2 1
h nmr图谱分析,发现可以跟dox相应的峰一一对应,因此释放出的是dox。可见实施例1所制备的dox前药具有受热分解释放dox的能力,为其深入穿透肿瘤内部创造条件。
[0060]
实施例5性能测试
[0061]
将不同浓度(0.001~10mg/ml)的实施例1制备的dox-光热转换材料和对比例1制备的非可逆dox-da-光热转换材料按不同浓度与肿瘤细胞(4t1)共培养,并进行光照10min其对肿瘤细胞的抑制情况如图3所示。dox-光热转换材料在近红外光照下对肿瘤细胞的抑制效率明显高于对比例1制备的dox-da-光热转换材料在近红外光照下对肿瘤细胞的抑制效率。这是因为dox-da-光热转换材料在近红外光照下释放呋喃基修饰的dox(dox-呋喃),而dox-光热转换材料在近红外光照下释放未经修饰的dox。这说明本发明所公开的dox-光热转换材料在近红外光照下释放未经修饰的dox具有更佳的肿瘤细胞抑制效果。
[0062]
实施例6
[0063]
对肿瘤荷瘤小鼠评价分为5组,每组3只,分别依次注射(1)生理盐水、(2)实施例1制备的dox-光热转换纳米颗粒、(3)实施例1制备的阿霉素前药、(4)对比例1制备的非可逆阿霉素前药、(5)对比例2制备的不具备尺寸调控的阿霉素前药,并在注射6小时后进行近红外光照射。每周按上述方式治疗两次,共治疗两周。每2天统计一次肿瘤体积,绘制肿瘤体积随时间的变化曲线,如图4所示。从图中可以只有第(3)组注射实施例1制备的阿霉素前药加近红外光照具有较好的肿瘤抑制效果。这是因为第(2)组、(5)组不具备尺寸调控功能,(2)组的小尺寸致使纳米药物无法在肿瘤内富集,(5)组的纳米药物在肿瘤内不具备解体为小尺寸的功能,肿瘤穿透性弱。第(4)组注射对比例1制备的非可逆阿霉素前药,释放出的dox-呋喃因其呋喃修饰,抗肿瘤效果减弱。
[0064]
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献