一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

增强型汽车无源进入的制作方法

2022-08-14 01:08:04 来源:中国专利 TAG:

增强型汽车无源进入
1.本分案申请是基于申请号为201880011034.7,申请日为2018年2月12日,发明名称为“增强型汽车无源进入”的中国专利申请的分案申请。
2.相关申请的交叉引用
3.本技术要求2017年2月10日提交的名称为“enhanced automotive passive entry”(增强型汽车无源进入)的美国临时申请no.62/457,747的优先权并且是其pct申请,该申请的全部内容以引用的方式并入本文以用于所有目的。


背景技术:

4.现代汽车允许使用钥匙扣卡进入,并且一些汽车允许当钥匙扣卡位于汽车内部时由按钮启动。这样的操作被称为无源进入和无源启动,其使用钥匙扣卡的位置来解锁汽车,允许启动汽车并提供其他功能。钥匙扣卡的位置使用从汽车中的磁性天线发射的磁信号来确定。通过钥匙扣卡测量磁信号并将其发送至汽车,以确定钥匙扣卡的位置。
5.钥匙扣卡可能是笨重的,并且是用户必须携带的额外物品。此外,磁场是短程的,并且当前技术容易受到黑客的影响,这可允许小偷进入汽车并可能将其窃取。
6.因此,希望提供克服这些问题中的任何一种的新方法和设备。


技术实现要素:

7.一些实施方案可提供方法和设备,该方法和设备允许移动设备(例如,钥匙扣卡或消费电子设备,诸如移动电话、手表或其他可穿戴设备)与车辆交互,使得移动设备的位置可由车辆确定,从而启用车辆的某些功能。
8.根据一个实施方案,移动设备和车辆可包括一个或多个射频(rf)天线和一个或多个磁性天线。移动设备可测量来自车辆的rf信号和磁性信号的信号属性,该信号属性与设备的天线和车辆天线的距离相关。信号属性的示例包括接收信号强度指示符(rssi)和飞行时间值(例如,往返时间,rtt)。在一些具体实施中,一个或多个磁性天线可测量磁性信号的rssi,并且一个或多个rf天线可测量飞行时间值。各种类型的天线可以组合使用或单独使用。例如,一个或多个rf天线可用于确定远离车辆的移动设备的位置的变化(例如,以确定用户正在接近车辆),而一个或多个磁性天线可用于在移动设备在车辆附近或内部时确定移动设备的位置。移动设备或车辆可确定位置。可将该位置提供给车辆的控制单元,从而使得控制单元能够执行车辆的规定操作,诸如解锁一个或多个车门或允许使用启动按钮。
9.在一些实施方案中,磁性充电线圈可被重复用作磁性天线。在其他实施方案中,近场通信(nfc)天线可被重复用作磁性天线,以用于确定设备的位置。对一者或两者的这种重复使用可避免对专用磁性天线的需要并提供较小且成本较低的移动设备。在其他具体实施中,车辆可具有三维磁性天线,从而允许移动设备仅具有一个磁性天线。
10.根据另一个实施方案,从一个或多个天线(例如,rf或磁性)测量的信号值可与机器学习模型一起使用,以将移动设备的位置分类为在一组区域中的某个区域内。该组区域可包括车辆外部的一个或多个区域的第一子组和车辆外部的一个或多个区域的第二子组。
机器学习模型可使用横跨多个区域的位置处测量的各组信号值进行训练。可将特定区域提供给车辆的控制单元,从而使得控制单元能够执行车辆的规定操作。
11.通过参考以下具体实施方式和附图,可更好地理解本发明的实施方案的实质和优点。
附图说明
12.图1示出了具有lf定位系统的车辆。
13.图2示出了钥匙扣卡的内部。
14.图3示出了lf无源进入/无源启动汽车系统的高级系统设计。
15.图4示出了根据本发明的实施方案,用于rf测距无源进入/无源启动汽车系统的替代高级系统设计。
16.图5示出了根据本发明的实施方案,涉及移动设备和车辆的三个天线的测距操作的序列图。
17.图6示出了根据本发明的实施方案,用于无源进入/无源启动汽车系统的混合lf磁性 rf测距系统的所提议高级系统设计。
18.图7示出了根据本发明的实施方案,具有用于测量值和辅助数据的数据收集、处理和传输的部件的移动设备。
19.图8为根据本发明的实施方案,用于涉及移动设备使得车辆能够操作的方法的流程图。
20.图9示出了根据本发明的实施方案的基于区域的无源进入/无源启动汽车系统。
21.图10示出了根据本发明的实施方案的所提议机器学习训练处理图。
22.图11示出了根据本发明的实施方案,用于识别移动设备相对于车辆位于哪个区域的机器学习模型的具体实施。
23.图12为用于涉及移动设备使得车辆能够操作的方法的流程图。
24.图13为根据一些实施方案的示例设备的框图,该设备可以是移动设备。
具体实施方式
25.一些实施方案可使得消费电子设备(例如,移动电话、手表或其他可穿戴设备)能够解锁和/或启动汽车,而无需专用汽车钥匙扣卡。消费电子设备没有用于典型钥匙扣卡,包括三个低频(lf)磁性天线的可用物理空间。实施方案可实现使用一个或多个rf天线和一个或多个磁性天线的混合位置解决方案。此类具体实施仍可提供10cm的位置精度,从而在汽车中实现无源进入/无源启动解决方案。
26.一些实施方案可具有少于三个磁性天线和/或较小的磁性天线,以便提供期望的功能和精度。在一个实施方案中,磁性充电线圈可被重复用作磁性天线。在另一个实施方案中,近场通信(nfc)天线可被重复用作磁性天线,以用于确定设备的位置。对一者或两者的这种重复使用可避免对专用磁性天线的需要并提供较小且成本较低的移动设备。
27.一些实施方案可使得移动设备(例如,钥匙扣卡或移动电话)能够使用机器学习模型来解锁和启动汽车,该机器学习模型可确定移动设备是否处于车辆内和周围的一组区域(例如,一组预先确定的区域)中的某个区域中。该机器学习模型可在存在信号衰减、延迟和
多路径的情况下实现无源进入/无源启动,从而使得能够在无需lf天线和lf信号的情况下进入汽车。在一些具体实施中,可使用lf天线来提高精度。
28.i.利用lf无源进入
29.具有无源进入/无源启动能力的汽车钥匙扣卡使用低频(lf)磁信号来确定钥匙扣卡的位置。这种技术可实现10cm的定位精度。这一精度是特征可靠性所需的,并且可能是保险公司的要求。基于lf的钥匙扣卡具有相对较大的天线,并且容易受到中间人攻击。
30.a.操作
31.图1示出了具有lf定位系统的车辆100。在汽车中,使用lf磁性系统来定位钥匙扣卡105。根据图1,现代汽车通常具有多个发射lf磁性天线110(例如,4-8个)。这些天线是1维的,即它们产生的矢量磁场主要在一个方向上。将它们放置在整个车内,以便在定位钥匙扣卡时提供良好的几何精度。由汽车lf天线产生的1d磁场由钥匙扣卡中的3d lf天线补偿,其可在矢量磁场强度处测量。
32.rf接收器120可从钥匙扣卡105接收测量数据并将测量值传送至车辆控制单元130,该车辆控制单元可控制车门传感器140和启动/停止按钮150。如图所示,车辆控制单元130连接到发动机控制单元160,该发动机控制单元操作汽车的动力功能。如上所述,钥匙扣卡105通常体积较大,并且是需要携带的额外设备。
33.跛行模式天线170可以在钥匙扣卡105已被移走时,为车辆100发起跛行模式。跛行模式可以部分地禁用车辆,同时保持驾驶能力。一个示例是当钥匙扣卡存在于车辆内部以启动车辆,然后钥匙扣卡被从车辆内部移走时(例如,丢失或扔出窗口)。在这种情况下,车辆可指示钥匙扣卡缺失,但可继续允许发动机运行和车辆行驶。在该示例中,如果不将钥匙扣卡放回车辆内部,车辆就不能重新启动。
34.b.lf设备
35.现有的汽车无源进入/无源启动系统通过使用低频(lf)磁信号(例如,在100的整数倍的khz,诸如高达500、600、700、800或900khz)来工作以定位钥匙扣卡。该位置提供必要输入以确定汽车应采取什么动作。基于钥匙扣卡位置的决策的一些示例包括是否:解锁车门、启动汽车或防止后舱口在钥匙在内部的情况下关闭。
36.现有的lf技术需要具有相对大体积的天线,从而需要大的钥匙扣卡或使得其难以集成到消费移动设备(例如智能电话或手表)中。例如,消费移动/电子设备通常具有显示屏(例如,触摸屏),并且理想地具有薄的平坦形状,如果添加标准的3d lf天线,这将难以保持。另一个挑战是,由于其调制速率低,因此存在针对lf信号的中间人攻击。这些攻击如果成功,可以让人偷走汽车。
37.图2示出了钥匙扣卡200的内部。图2示出了10cm定位精度所需的三个lf天线205(提供矢量场的3个正交测量值)的相对较大尺寸。如图所示,天线210具有约2cm的直径。需要10cm的定位精度来满足保险要求,并且是可靠的无源进入/无源启动所需的。3d天线可确保无论其取向如何,钥匙扣卡都能够测量到足够强的信号。例如,车辆磁性天线通常为螺线管线圈,其在螺线管内具有磁体,其提供几乎线性的磁场。如果设备的线圈未被取向成具有与来自车辆天线的线性磁场至少部分对齐(例如,平行)的轴线,则在设备线圈中测量的磁通量可能减小。具有彼此正交的三个线圈可确保线圈中的至少一个接收到强信号。另外,当组合来自三个线圈的信号强度时,总和相对于取向通常是不变的。
38.c.位置确定
39.图3示出了lf无源进入/无源启动汽车系统的高级系统设计。用户例如通过触摸驾驶员侧门把手或按压汽车的启动按钮而与汽车物理地交互。通常,这种与汽车的物理交互是汽车使用lf系统发起钥匙扣卡定位所需的。稍后描述的一些实施方案可以基于设备与汽车之间的通信触发而开始定位。
40.可通过顺序或同时测量来自每个汽车lf天线(图3中的天线301-304)的所接收信号强度来进行钥匙扣卡距离测量。通过使钥匙扣卡测量从每个天线接收的lf场强度,然后将强度转换为距离来进行距离测量(随后的实施方案描述了如何能将信号强度直接转换为被确定为例如内部或外部的区域)。具体地,lf线圈上的电压被转换为距离测量值。磁场强度的功率在近场中按照1/r3下降,从而对距离的变化提供了极好的灵敏度。可将所测量的磁场强度正确地与每个天线相关联,从而允许利用lf天线301-304的已知位置进行三角测量。在稍后描述的一些实施方案中,不计算距离,信号强度值可直接用于确定钥匙扣卡位置。
41.然后可将测得的lf场强度(或距离)传输回汽车,以便汽车计算钥匙扣卡的位置。另选地,钥匙扣卡可计算位置,以代替或补充汽车位置确定。辅助信道(例如,uhf信道)可用于传输该信息。
42.除了这些通信之外,其他通信可例如使用(蓝牙)以加密方式向汽车认证钥匙扣卡以及向钥匙扣卡认证汽车。这种安全系统可能有一些弱点,主要来自针对lf子系统的中间人攻击。例如,攻击者可以放大来自钥匙扣卡的信号,这样可以模拟如同钥匙扣卡在车辆附近或内部一样。又如,攻击者可以嗅探出并保存被重复使用的滚动认证代码。消费电子设备的使用可启用更高级的认证技术。
43.ii.rf测距
44.一些实施方案可通过完全消除对钥匙扣卡的需要并允许用户的移动设备(例如,智能电话)执行现有的无源进入/无源启动特征来提供对无源进入/无源启动系统的改进用户体验。作为使得移动设备(例如,移动电话)能够执行此类无源功能的一部分,可使用射频(rf)信号,而不是低频(lf)磁信号。
45.因此,上述问题的解决方案是用集成到汽车和移动设备中的高精度rf测距系统替代(或补充)汽车和钥匙扣卡中的lf子系统。rf测距系统(诸如超宽带(uwb))具有cm级的测距精度、适合集成到移动设备中的小天线,与汽车基本上远离(距离~10m)而发挥作用,并且不具有与lf系统相同的安全漏洞。
46.对用户体验的另一种改进可以是在接近或离开汽车时检测用户的意图,例如,如果车辆当前被锁定,接近汽车的用户可能有解锁车辆的意图。另外,当用户接近汽车时,汽车可打开内部灯,启用加热系统,并且解锁车门或后备厢,而无需进行物理交互并且安全地这样做。由于rf信号的功率按照1/r2衰减,可实现此类更长范围的意图。另一种改进可以是降低lf磁性中间人攻击的灵敏度。
47.a.示例rf系统
48.图4示出了根据本发明的实施方案,用于rf测距无源进入/无源启动汽车系统的替代高级系统设计。车辆420可包括向移动设备410发送信号的多个rf天线401-403(如图所示,3个)。移动设备410可通过使用信号属性,诸如rssi或飞行时间信息(例如,rtt或仅单向
传输的时间)来确定与rf天线401-403的距离。测量的信号值可由移动设备410或车辆420使用(例如,在从移动设备410接收所测量的信号值之后),以确定移动设备410相对于车辆420的相对位置。
49.与磁性lf系统不同,任何rf测距系统的一个问题是汽车车身、附近障碍物(汽车、建筑物、地面)和人体可能导致信号多路径和信号衰减。多路径和衰减可降低用户设备的位置精度,使得其无法在汽车工业所需的水平上执行(例如,针对内部/外部检测,为10cm精度)。例如,仅当用户在驾驶员座椅中时,才应启用汽车。当用户在汽车内或附近时,多路径可能是特别有问题的。为了解决此类问题,一些实施方案可将lf系统与rf系统结合使用。除此之外或另选地,实施方案可以使用机器学习模型来确定移动设备是否位于车辆内或车辆周围的某些区域中。另外,可使用多个rf天线,以防天线中的一个例如被用户的手遮蔽。
50.b.示例rf测距序列
51.可使用第一无线协议(例如,)对移动设备和车辆进行配对。然后,移动设备和车辆可例如在稍后的任何时间(包括,几小时、几天、几周等之后)彼此通信。在配对之后,可使用第一无线协议来认证车辆和/或移动设备。
52.配对可通过移动设备发送宣告信号(例如,使用低功耗(btle))并且车辆在扫描期间检测到宣告信号而发生。此类宣告和检测可包括触发事件以开始定位,该触发事件可发生在比物理触发(诸如提升门把手)更远的地方。触发事件的另一个示例是建立btle连接,例如,认证车辆和/或生成用于测距的密钥。用于认证的此类密钥可由安全元件例如在应用处理器中存储和管理。移动设备和车辆可使用第一无线协议来交换测距能力。可使用第一无线协议来发起测距,然后使用第二协议例如超宽带(uwb)来执行。可在美国临时申请no.62/565,637中找到更多细节,该申请以引用的方式全文并入本文。在其他实施方案中,同一协议可用于认证和测距。
53.在使用第一无线协议发起信号之后,车辆可使用对应于第二无线协议的一个或多个车辆天线单元在指定时间开始扫描测距信号。一个或多个车辆天线单元可接收一条或多条测距请求消息并发送一条或多条测距响应消息。一个或多个车辆天线单元中的每一个中或它们之间共享的控制单元可对此类测距消息执行各种水平的处理,例如,以确定时间戳。移动设备可接收测距响应消息并确定用于传输一条或多条测距请求消息的时间戳和用于一条或多条测距响应消息的时间戳。移动设备可将这些时间戳发送至车辆,以用于确定移动设备和车辆之间的距离。在其他具体实施中,移动设备可基于测距信号的传输和接收时间来确定距离。测距可继续直到停止测距请求被处理。在一些实施方案中,可使用除距离之外的其他位置信息,例如,移动设备在哪个区域,如第iv节所述。
54.作为测距的一部分,移动设备或车辆可发送初始测距消息,该初始测距消息可包括一系列脉冲。这些脉冲可比用于认证的第一无线协议中使用的脉冲更窄。例如,移动设备可广播初始测距消息,使得车辆的每个rf天线可接收该消息。移动设备可跟踪发送初始测距消息的准确时间(例如,在10-100皮秒的精度上)。每个车辆rf天线可发送测距响应消息,该测距响应消息可包括标识哪个车辆rf天线发送特定响应消息的标识符。移动设备可跟踪接收测距响应消息的确切时间。
55.在一些实施方案中,移动设备可将所接收的时间发送至车辆,该车辆可使用其自己在每个车辆rf天线处接收初始测距消息的所接收时间和图4的示例中发送三个测距响应
消息的每个的时间来确定移动设备和车辆之间的距离(或其他位置信息)。发送和接收每条消息的时间的差异可用于确定距离,例如,当两个设备的时钟同步时。又如,可从移动设备处的发送和接收时间减去接收初始测距响应消息和发送测距响应消息的时间延迟,以获得往返时间,可基于电磁信号的速度将该往返时间转换为距离。车辆中的不同rf天线的已知位置可用于对移动设备相对于车辆的位置进行三角测量。
56.在其他实施方案中,移动设备可确定与车辆的距离(或其他位置信息)。例如,如果车辆所交换的测距信息包括(1)车辆的rf天线的相对位置和(2)接收测距请求消息和发送测距响应消息之间的预期延迟,则移动设备可使用其发送和接收测距消息的所接收时间来确定距离。
57.图5示出了根据本发明的实施方案,涉及移动设备500和车辆的三个天线552-556的测距操作的序列图。在图5的该示例中,移动设备500广播单个包,该单个包被天线552-556(例如,不同节点的每个节点)接收。在另一个具体实施中,移动设备500可向每个节点发送包,并且使每个节点对该不同的包作出响应。车辆可在指定的天线处侦听,使得两个设备都知道涉及哪个车辆天线,或者包可指示消息针对哪个天线。例如,第一天线可对所接收的包作出响应;并且一旦接收到响应,则可将另一个包发送至不同的天线。但是,这种替代过程需要花费更多的时间和功率。
58.图5示出了测距请求510在t1被发送,并且分别在时间t2、t3和t4在天线552-556处被接收。因此,天线(例如uwb天线)基本上同时侦听并且独立地响应。天线552-556提供测距响应520,其分别在时间t5、t6和t7处发送。移动设备500分别在时间t8、t9和t10处接收测距响应。任选的测距消息530可被发送(在t11处示出),其分别在时间t12、t13和t14处由天线552-556接收。信息540(例如,位置、距离或时间)可在一组测距消息之后发送,并且可能仅需要由一个天线接收,该一个天线可将信息中继到控制单元。在所示的实施例中,由移动设备500跟踪的时间戳被发送至天线552-556中的至少一个,使得车辆可例如基于车辆中天线的位置来确定与车辆的距离。在其他实施例中,移动设备500可确定距离并将距离发送至车辆。除距离之外,可确定其他位置信息,例如,移动设备所驻留的区域,如第iv节中所述。
59.在一些实施方案中,为了确定哪个测距响应来自哪个天线,车辆可例如在测距设置握手期间将要发送的响应消息的次序通知移动设备。在其他实施方案中,测距响应可包括标识符,该标识符指示哪个天线发送消息。可在测距设置握手中协商这些标识符。
60.使用测距消息530可允许改善精度。天线可处于彼此同步的时钟上,但响应时间(例如,t2和t5之间的延迟)可具有不同延迟,例如,t5-t2和t6-t3可不同。测距消息530可为对于每个天线节点不同的转向时间提供的弹性。这种转向时间的差异可导致一两米的测距误差。通过增加测距消息530,实施方案可减小由于不同的转向时间导致的误差。距离公式的这种替代写法可提供时间戳的函数,该函数显著地最小化残余时钟漂移速率和在可能不同的转向时间期间累积的时钟偏移的影响。
61.消息510-530可在有效载荷中包括极少的数据,例如通过包括比本来可能使用的更少的脉冲。使用更少的脉冲可能是有利的。车辆和移动设备(可能在口袋中)的环境可使得测量困难。又如,车辆天线可能面对与移动设备接近的方向不同的方向。因此,希望对每个脉冲使用较高的功率,但对于在指定时间窗口内可使用多少功率(例如,在1毫秒内平均),则有政府限制(以及电池问题)。这些消息中的包帧的长度可为150至180微秒左右。包
括信息540的消息中的包帧可更长,例如,200或250微秒长。
62.iii.组合rf和lf
63.在消费电子设备中使用lf的一个问题是磁性线圈的尺寸。具体地讲,使用三个正交线圈以确保精确测量,即,无论设备的取向如何,均测量足够的磁通量。如上所述,仅rf的测距系统可能遭受衰减问题,从而抑制期望的精度(例如,在10cm之内)。
64.使用rf和lf天线两者可减少此类问题。例如,可仅使用一个lf天线,因为一个或多个rf天线可对测量进行补充以确保来自足够数量的天线的足够强的信号。例如,由于设备的当前取向,设备可能未测量来自一个lf天线的足够强的信号,因此lf天线可能不提供任何可用的位置信息。但是,一个或多个rf天线(其可靠近当前不可用的lf天线)可提供足够强的信号,使得可从那些rf天线进行距离测量,从而补充由设备的当前取向引起的不足。另一个具体实施可使用至少一个比通常用于现有钥匙扣卡中更小的磁性线圈(例如,对于具有不在设备显示屏的主平面中的绕组的线圈的更小直径)。
65.另外,相对于设备仅使用rf天线的实施方案,使用rf和lf两者可减少rf天线的数量。lf天线的补充(可为了兼容传统设备而保持)可降低rf系统的成本。
66.a.混合系统
67.图6示出了根据本发明的实施方案,用于无源进入/无源启动汽车系统的混合lf磁性和rf测距系统的所提议高级系统设计。该混合系统可在车辆620中重复使用现有的lf天线601-604,具有添加一个或多个lf天线以提供正交磁场的可能性。如图所示,该系统包括将rf天线651-653(以及可能的测距芯片)集成在车辆620中的各种位置。移动设备610可集成rf测距芯片和rf天线,例如,如图7中所述。
68.因此,为了减轻仅rf测距系统可能发生的可能缺陷,可使用混合lf rf测距系统。混合系统可提供现有lf解决方案的所有性能优点,但对于移动设备具有不同的优点。混合解决方案可将rf测距芯片和一个或多个天线集成到移动设备中。lf芯片和天线可显著更小,例如,如果其被设计为仅当用户相对靠近汽车或在汽车内部(距车辆的中心1-2m)时才工作,而不是10米之外工作。
69.在一些实施方案中,移动设备610可在移动设备610中重复使用或集成一个或多个磁性线圈。线圈的重复使用可通过将线圈重新用于感应充电或用于近场通信(nfc)来完成。另选地,如果移动设备不支持感应充电(或nfc)或需要更多的线圈来提供场测量正交性,则可添加另外的线圈。由于消费移动设备受到空间约束,这可能限制线规、缠绕直径和线圈中的线匝数。
70.因此,通过重复使用移动设备中的感应式(无线)充电子系统的部件可获得混合系统的另一个有益效果。这些子系统可包括一个或多个感应线圈(例如,lf天线)、从所接收的磁场对电池充电的芯片,并且通常在100的整数倍的khz频率范围内工作,这类似于现有的汽车lf系统。例如,当执行测距操作时,感应充电线圈可以与天线210类似的方式工作。
71.然而,重复使用现有的无线充电线圈可能会引起问题。移动设备中的lf天线的数量和取向可能小于存在于当今钥匙扣卡(诸如钥匙扣卡200)中的期望3d天线配置。这可以通过各种方式加以克服。例如,可将附加线圈添加至移动设备以提供完整的3d功能,或者可利用附加天线来增强汽车的现有lf天线,以在三个正交方向上生成磁场。此类具体实施可确保移动设备无论其取向如何均可测量强信号。
72.b.混合无源进入系统
73.图7示出了根据本发明的实施方案,具有用于测量值和辅助数据的数据收集、处理和传输的部件的移动设备。lf天线705(其可对应于多个天线)上的信号可由lf芯片710测量以提供信号值(例如,rssi)。rf天线715(其可对应于多个天线)上的信号可由rf芯片720测量以提供信号值(例如,飞行时间、rssi和/或角度信息)。测量电路740(例如,在可编程处理器中)可确定距离或其他距离信息。测量电路740(或其他电路)可包括安全元件745用于存储和管理密钥,例如,获取和提供加密和认证密钥,如本文所述。
74.在一个实施方案中,rf信号的rssi信息可用于对飞行时间距离进行加权。因此,从具有低强度的信号确定的距离可被赋予较低的权重。角度信息可使用两个车辆天线之间的间距并使用姿态(取向)测量值来确定。可确定每个天线的方向,该方向可用于约束位置。例如,如果移动设备基于距离测量值和信号强度(或相位)处于特定天线的视场中,则可约束移动设备的位置。
75.在图7中,可在移动设备上测量来自一个或多个车辆rf和lf磁性天线的lf rssi和rf距离信息(例如,飞行时间信息)。然后可例如通过测量电路740过滤或处理测量值以检查它们的完整性并移除离群值,测量电路可驻留在移动设备的应用处理器中。这些测量值连同任何所需的辅助数据,诸如陀螺仪、加速度计和粗略位置数据(例如,gps)可被收集,然后被传输回汽车以用于精确的移动设备位置确定。例如,传感器750可包括陀螺仪和/或加速度计。例如,粗略位置电路760可包括gps电路、wifi电路或蜂窝电路。所收集的测量值和辅助数据的传输可在任何合适的无线通信系统(例如,电路730和rf天线725)上进行,无线通信系统包括wifi、bt、uwb或甚至lf系统。此类辅助数据可提供移动设备的一个或多个物理属性的一个或多个其他值。
76.如果仅使用一个磁性线圈,则线圈的直径可以很大,例如,设备长度的至少1/4、1/2或几乎最长的长度,例如,约2-5cm。大直径(以及可能更多的绕组,例如4-9个)可提高测量通过车辆磁性天线中的线圈的磁通量的灵敏度。陀螺仪(例如,传感器750中的一个)可与磁性线圈的测量值结合使用,以校准所测量取向的信号强度。如果仅使用一个设备磁性天线,则信号强度将取决于设备的取向。如果识别了车辆天线(例如,使用车辆中的天线之间唯一的标识符),则设备的取向(如通过陀螺仪测量的)可与距离随信号强度如何变化的特定函数形式相关。例如,移动设备的一个取向(例如,一组三个角度:偏转、俯仰和滚转)将提供与车辆天线相距不同距离的一组同心圆,每个圆对应于不同的信号强度。然而,第二取向可具有相同的同心圆,但对应于不同的信号强度,因为不同取向将在距天线相同的距离处产生不同的信号强度。
77.可使用不同的取向进行测量,以便针对信号强度和取向的给定测量对(数据点)校准距离。并非需要信号强度和取向的每种可能组合,因为所测量的校准数据点的插值或函数拟合可用于填充未被校准数据点覆盖的间隙。因此,取向可使用移动设备的传感器来测量,并且该取向用于确定设备磁性天线和车辆磁性天线之间的距离的对应关系。
78.在一些实施方案中,lf线圈可主要用于非常靠近车辆(例如,在1m内或车辆内)处,并且因此较小的磁性线圈(例如,0.5cm或更小)可在处于该范围之内时测量来自车辆lf天线的足够强的信号。当距车辆更远时,可使用rf测距系统。rf信号衰减速度比磁场慢,而且当设备更远离车辆时,不需要10cm的精度。
79.可基于距离来确定使用rf系统还是lf系统。例如,rf系统可在lf系统之前开始接收可测量的信号。通过这种方式,位置电路(一个移动设备或在车辆中)可选择性地忽略(或向其分配低权重)由lf系统测量的可忽略的信号强度,从而使用rf系统来确定相对位置。然后,当rf信号指示更近的距离和/或lf信号变得明显时,lf信号可被分配更高的权重并开始被使用。然后,在某个点(例如,基于指示阈值距离内的位置的rf信号和/或lf信号),可忽略rf信号,或分配给rf信号的权重可随着设备继续接近车辆而开始减小。例如,至少在一些实施方案中,一旦设备在车辆之内,lf系统即可被独占使用。
80.在一些实施方案中,可使用两个线圈,其中两个线圈正交或在两个线圈的轴线之间至少有45
°
的差异。一个线圈的直径可比另一个线圈大得多。较小的线圈可具有更多绕组和/或更粗的线材。电感的示例在60-80μh之间。
81.c.双重用途
82.如上所述,消费设备(例如,手机或手表)中的线圈可用于多种目的,其中一种用于测量从车辆天线发射的磁信号。此类线圈也可用于对设备进行充电,用于经由nfc传送数据,或用于其他目的。这种重复使用可以通过任何使用磁性天线的实施方案来实现。
83.根据一个实施方案,一种移动设备可包括一个或多个磁性天线(例如,图7的705)和强度测量电路(例如,图7的710),其与一个或多个磁性天线耦接并被配置为提供来自外部天线的信号的信号强度。移动设备还可具有与一个或多个磁性天线耦接并被配置为经由与一个或多个磁性天线相互作用的磁场充电的电池。来自外部天线的信号的信号强度可用于确定移动设备的位置。
84.又如,移动设备还可具有与一个或多个磁性天线耦接并被配置为与外部设备传送数据的数据通信电路(例如,用于nfc)。来自外部天线的信号的信号强度可用于确定移动设备的位置。
85.d.利用混合系统的方法
86.图8为根据本发明的实施方案,用于涉及移动设备使得车辆能够操作的方法800的流程图。方法800可由测量信号值的移动设备或由接收来自移动设备(例如,电话或手表)的信号值的车辆执行。另外,一些实施方案可提供加密或认证,以及移动设备/汽车发现,例如,如本文所述。
87.在框810处,使用移动设备的一个或多个设备rf天线接收测量的第一组信号值。第一组信号值可提供来自车辆的一个或多个车辆rf天线的信号的一个或多个第一信号属性(例如,信号强度或飞行时间值,诸如往返时间(rtt))。信号的一个或多个第一信号属性可相对于接收信号的设备rf天线和发射信号的车辆rf天线之间的距离而变化。
88.来自车辆天线的信号可包括标识特定天线的标识符。通过这种方式,所测量的信号值可与正确的天线相关联。可在移动设备和车辆之间进行识别和/或认证之后测量第一组信号值。该rf测量可在距车辆较长距离(例如,距车辆15m、10m或5m)处进行。在各种实施方案中,一个或多个rf天线在315mhz至956mhz、2402mhz至2480mhz(针对蓝牙)和/或3.1ghz至10.6ghz(针对uwb)的范围内的频率下工作。
89.在框820处,使用移动设备的一个或多个设备磁性天线接收测量的第二组信号值。磁性天线可在低频范围内工作(例如,几百khz,诸如100khz至900khz的范围)。第二组信号值可提供来自车辆的一个或多个车辆磁性天线的信号的一个或多个第二信号属性。信号的
一个或多个第二信号属性(例如,信号强度)可相对于接收信号的设备磁性天线和发射信号的车辆磁性天线之间的距离而变化。在一些实施方案中,可通过rf测量来触发磁性测距的开始。
90.一组信号值可包括一个信号值或多个信号值。该组信号值可包括由从发射天线发送并由多个天线接收的一个信号产生的多个信号值。在另一个示例中,该组信号值可包括由从发射天线发送并由一个或多个天线接收的多个信号产生的多个信号值。
91.在框830处,使用第一组信号值和第二组信号值确定移动设备的位置。每个信号值可对应于与对应车辆天线的特定距离。基于距离,可使用三角测量法确定与每个车辆天线具有规定距离的位置点。在一些实施方案中,第一组信号值和第二组信号值两者均用于在相同时刻确定相同位置。在其他实施方案中,第一组信号值可用于在第一时间测量第一位置,并且第二组信号值可用于在第二时间测量第二位置,从而满足使用第一组信号值和第二组信号值来确定位置(即,一个或多个位置)。
92.在各种实施方案中,可使用卡尔曼滤波算法、粒子滤波算法、高斯混合滤波算法或最小二乘技术来确定位置。最小二乘技术可用于对信号进行三角测量,以识别最能满足所测量的与所有天线的距离的位置。在最小二乘技术中,对不同天线的测量可进行不同的加权。除了最小二乘技术之外,还可使用其他误差量度,例如,所测量的距离与所选坐标和天线的距离之间的差值的绝对值。各种技术可用于求解将所选距离(及其关联距离)与所测量距离之间的误差的成本函数最小化的方程组。例如,可使用迭代优化技术。测量中的误差可由信号中的噪声引起,因此不存在精确地提供与所有天线的实测距离的单个位置。
93.在一些实施方案中,卡尔曼滤波算法可使用历史位置信息来更好地通知当前位置。卡尔曼滤波算法可提供用于提供位置的历史记忆的最优框架。卡尔曼滤波算法可基于典型的物理运动。卡尔曼滤波算法的不同模型可用于不同的物理运动,例如,一种卡尔曼滤波算法用于当用户正在走向车辆时,另一种卡尔曼滤波算法用于用户在车辆之内时。
94.位置的确定可由移动设备或车辆执行。例如,移动设备可向车辆发送距离信息,该信息可确定位置。在一些具体实施中,距离信息可对应于第一组脉冲的一个或多个传输时间和第二组脉冲的一个或多个接收时间。距离信息可包括对应于测距请求消息中的第一组脉冲和一个或多个测距响应消息中的第二组脉冲的时间戳,例如,如图5所示。时间戳可被配置为由车辆的控制单元使用以确定移动设备与车辆的距离,例如,如本文所述。
95.在其他实施方案中,移动设备可确定距离。例如,移动设备可使用第一组脉冲的一个或多个传输时间和第二组脉冲的一个或多个接收时间以及天线在车辆中的位置来确定距离。因此,距离信息可包括距离。
96.在框840处,该位置被提供(例如,传输)到车辆的控制单元。该位置可在内部提供(例如,当由车辆确定时)或从移动设备传输(例如,当移动设备确定位置时)。通过这种方式,可以使控制单元能够执行车辆的规定操作。例如,该位置可从车辆控制单元(例如,图1的单元130)的一个模块被提供至另一个模块,例如,以打开车门或启用启动按钮。又如,该位置可例如经由rf接收器(例如,图1的rf接收器120)从移动设备被提供至控制单元。
97.可基于对车辆边界的了解来确定所测量的位置在车内还是车外。该设备是否在汽车内可用于确定启动按钮是否已被启用。在另一个示例中,如果设备在车辆之内,则可阻止车门或后备厢关闭。车辆的边界和车辆天线之间的关系可由控制单元基于车辆的设计获
知,例如,编程到控制单元中。
98.因此,移动设备可包括用于测量rf信号和lf信号的信号值的电路。根据一个实施方案,一种移动设备可包括一个或多个rf天线(例如,图7中的715)以及与一个或多个rf天线耦接的rf测距电路(例如,图7中的720)。rf测距电路可被配置为分析来自一个或多个rf接收天线的信号并且提供与移动设备相对于一个或多个rf源天线的距离或取向相关的一个或多个第一信号值。移动设备还可包括一个或多个磁性天线(例如,图7中的lf天线705)以及与一个或多个磁性天线耦接的磁性测量电路(例如,图6中的710)。磁性测量电路可被配置为分析来自一个或多个磁性天线的信号并且提供与移动设备相对于一个或多个磁性源天线的距离相关的一个或多个第二信号值。
99.移动设备还可包括测量电路(例如,图7中的740),该测量电路被配置为向位置电路提供一个或多个第一信号值和一个或多个第二信号值以用于确定移动设备的位置。收集电路可被进一步配置为识别一个或多个第一信号值和一个或多个第二信号值之间的任何离群值,并且排除离群值,不将其提供给位置电路。位置电路可位于移动设备外部的设备,例如车辆中。在此类具体实施中,rf天线725可用于发送信号值。
100.e.改进的车辆
101.如上所述,可利用附加天线来增强车辆的现有lf天线,以在三个正交方向上生成磁场。根据一个实施方案,一种车辆包括多组三个正交磁性天线。每组正交磁性天线可发射磁信号,该磁信号可操作为由具有对应磁性天线的移动设备检测,以用于确定移动设备的位置。
102.iv.机器学习
103.rf测距技术(例如,超宽带(uwb))可提供10cm的测距精度,具有较小的天线,并且对中间人攻击更具弹性。然而,由于汽车车身、附近物体和人体的原因,它们可能易受信号衰减、延迟和多路径的影响。这些影响可能导致位置估计不精确,从而降低基于rf的系统的总体性能和实用性。另外,移动设备可具有更小或更少的线圈(磁性天线),这可能导致经由lf系统的测量更弱、更少和/或更不精确。实施方案可使用机器学习模型来克服此类问题。
104.a.基于区域的位置确定
105.代替计算钥匙扣卡的2d或3d坐标,将位置分组到离散的感兴趣位置(例如,汽车内部和汽车外部)可能就足够了。可以基于钥匙扣卡位置进行二元决策或多类决策。通过这种方式来解决问题,可以放松定位算法的要求,并提供使用机器学习模型做出决策的机会,做出决策可以包括使用统计假设检验。
106.图9示出了根据本发明的实施方案的基于区域的无源进入/无源启动汽车系统。图9示出了将潜在钥匙扣卡位置的子组分组到离散的感兴趣区域中的示例。例如,当用户在锁定的汽车之外并触摸驾驶员侧车门时,定位逻辑部件仅需要作出如下可靠的决策:钥匙扣卡位于区域1中以便将汽车解锁。另选地,如果用户在汽车之外的任何区域中,即区域1、2或3中,则可作出解锁的决策。只要无源进入/无源启动系统从定位算法接收到正确的决策,系统就将可靠地工作。
107.各种实施方案可具有或多或少的区域,并且示于图9中。例如,可能仅有两个区域:车辆内部和车辆外部。作为具有更多区域的实施例,第五区域可对应于所示四个区域之外的位置。该第五区域将对应于远离车辆的移动设备。可经由从第五区域到更靠近的外部区
域之一的变化来推断用户带着移动设备接近车辆的意图,如可类似于在测量到特定距离时所做那样。
108.所示的四个区域可具有与所示的形状不同的形状,例如,区域2可更长,使得其涵盖车辆的整个侧面。此外,每个区域可分成多个子区域。例如,区域4可具有对应于车辆内部不同部分的子区域,诸如四个或五个不同的驾驶员和乘客座椅。后备厢或仪表板也可以是区域。在一个实施方案中,可使用机器学习模型来确定何时可使用较高水平区域(例如,无论内部还是外部)以及使用独立模型来确定设备在哪个子区域。
109.当用于汽车和钥匙扣卡测距的收发器是基于rf的而不是基于lf时,针对该问题的机器学习(例如,集群、分类或深度学习)方法是特别有价值的。rf信号容易因为汽车车身、附近物体(其他汽车、地面、建筑物结构)和人体而衰减、延迟、反射和衍射。需注意,lf信号通常不受相同的影响,或者所受影响显著更小。信号衰减、延迟和多路径是在范围测量中引起偏差和噪声的随机效应。尝试补偿这些效应的基于物理学的技术(例如,卡尔曼或粒子滤波算法)非常具有挑战性,难以可靠地实现或具有较长的收敛时间。
110.b.训练
111.图10示出了根据本发明的实施方案的所提议机器学习训练处理图。机器学习系统的训练模块1010可接收数据1005,该数据可包括距离测量值和真实数据。例如,可接收对应于来自车辆上的一个或多个收发器的距离测量值的输入信号值。例如,距离测量值可以是rf、lf或两者。真实数据可对应于移动设备在某一区域之内移动时人做出的判断,可能该人处于不同形态,例如行走或站立姿态。在一些实施方案中,此类测量可由最终用户执行,以便校准用户的特定关注。在其他实施方案中,测量可由移动设备的制造商例如针对一种或多种类型的车辆来进行。某些车辆可共享类似的天线配置。
112.此外,辅助数据可用于辅助机器学习。辅助数据的示例包括粗略位置1030(例如,gps位置)和传感器数据1020(例如,加速度计、陀螺仪等)。该数据可与距离测量数据1005结合,用于训练和提供模型1130。涉及辅助数据的示例是当车辆在家庭车库(例如,单车车库)中时,其可对应于车辆周围很少有或没有金属物体的多路径环境。这种环境将与停车库中的多径环境显著不同,在停车库中,有其他车辆在所关注车辆的旁边和前面或后面。gps可帮助识别车辆在哪种环境中,并且所识别的环境可用作模型的输入或用作对要使用哪种模型的选择。可为每个汽车类型或一组汽车生成模型。
113.在图10中,示出了模型的训练。可使用钥匙扣卡、消费设备或测试平台进行与一个或多个汽车天线的距离测量(例如,rf或lf)。这些测量值连同任何所需的辅助数据(例如,陀螺仪、加速度计和/或粗略位置数据)可用于机器学习训练以产生一个或多个模型。额外的潜在机器学习特征可包括(1)每个汽车收发器和钥匙扣卡之间的信道脉冲响应,以及(2)第一路径与第二路径的接收功率的比率,例如,对于多径场景。
114.要获得足够高的性能,可能需要对汽车内部和外部以及用户身体上或附近的各种位置上的许多可能钥匙扣卡位置进行测量。可为每个汽车生成模型,或者可将单个模型用于多个汽车。训练样本的数量可较大,并且可包括用户走向车辆的各种路径,其中移动设备以不同的形态被握持或携带。
115.机器学习模型的示例包括:决策树(包括梯度推进和随机森林)、支持矢量机、线性回归、逻辑回归和神经网络。可使用单个机器学习模型将设备分类到三个或更多个区域(例
如,图9所示的4个区域)之一。在另一个实施方案中,可针对每个区域就设备是否存在于该区域中做出二元决策。对于具有肯定决策(例如,到支持矢量机的超平面的距离或到逻辑回归的阈值的距离)的每个区域,可确定置信度分数(概率)。可以选择置信度分数最高的区域作为正确的区域。
116.c.机器学习无源进入系统
117.图11示出了根据本发明的实施方案,用于识别移动设备相对于车辆位于哪个区域的机器学习模型的具体实施。该决策可基于使用一个或多个天线1105和对应测量电路1110获得的实测距离信息1115(例如,rf和/或lf信号值)。可例如通过移动设备的一个或多个传感器1150(例如,加速度计或陀螺仪)和粗略位置电路1160(例如,gps)获得任选的辅助数据。机器学习模型1130可被提供给机器学习模块1140,机器学习模块1140可由移动设备或车辆来实现。例如,所测量的距离(由信号值表示)和任选的辅助数据可从移动设备传输到车辆,以便由车辆作出决策。在这种情况下,模型可被传输到车辆或驻留在车辆上。
118.可使用从一个或多个车辆天线接收的信号在移动设备上测量距离信息1115(诸如时间戳、信号强度或实际距离)。这些测量值连同任何所需的辅助数据(诸如陀螺仪、加速度计和粗略位置数据)与机器学习模型1130一起用于作出区域决策1145。模型1130的附加输入特征可以是信道脉冲响应和针对第一路径与第二路径的接收功率的比率。
119.信道脉冲响应涉及从单个天线接收多个信号,其中每个信号对应于信号的不同路径。例如,信号可直接在天线之间行进,但信号也可从各种表面反射。信道脉冲响应可被定义为给定时间间隔内的所测量信号中的一组峰。第一路径与第二路径的接收功率的比率可度量直接信号(第一峰)在具有一次反射的信号(第二峰)中的相对信号强度。第一峰可用于确定rtt。另一个特征可包括第一路径的功率相对于信道脉冲响应的总功率的比率。
120.在机器学习模块1140位于移动设备上的实施方案中,机器学习模块1040可将区域决策1145发送至网络接口1120(例如,wifi或),用于经由rf天线1015传输。将区域决策1145传输回车辆可通过任何合适的无线通信系统,包括wifi、bt或uwb。这种机器学习方法也可与常规lf信号一起使用,或与lf和rf信号一起成为混合系统。
121.d.使用区域决策的方法
122.图12为用于涉及移动设备使得车辆能够操作的方法1200的流程图。方法1200可由移动设备或车辆的电路(例如,可编程处理器和/或专用电路)执行。
123.在框1210处,接收使用移动设备的一个或多个设备天线测量的一组信号值。该组信号值提供来自在车辆中具有各种位置的多个车辆天线的信号的一个或多个信号属性。例如,车辆天线可以是lf和/或rf天线,如图1、图3、图4和图6所示。信号的一个或多个信号属性可相对于接收信号的移动设备的设备天线和发射信号的车辆天线之间的距离而变化。在一些实施方案中,该组信号值可由移动设备发送并由车辆(例如,图1的rf接收器120)接收。在其他实施方案中,该组信号值可由移动设备的模块(例如,图11的机器学习模块1140)接收。
124.在框1220处,存储机器学习模型,该机器学习模型基于一个或多个信号属性将移动设备的位置分类为位于一组区域的某一区域内。例如,该模型可作为软件存储在耦接到可编程处理器的存储器中,或存储为专用电路。该组区域可包括车辆外部的一个或多个区域的第一子组和车辆外部的一个或多个区域的第二子组。图9提供了一些示例区域。
125.机器学习模型可使用横跨多个区域的位置处测量的各组信号值进行训练。可选择训练样本以提供移动设备将位于的可能位置的表示,以及在用户身上的取向和放置的配置。
126.在框1230处,将该组信号值提供给机器学习模型以获得移动设备当前所处的特定区域的当前分类。在一些具体实施中,特定信号值可以是空值或某种哨位(特殊)值,诸如较大的负数,例如,当未针对特定车辆天线获得测量值时。在这种情况下,可进行另一次尝试以获得信号值,或者可向用户提供误差信号(例如,警报)。在另一个具体实施中,可使用来自缺失天线的最后一次测量。另选地,可将哨位值提供给机器学习模型,该机器学习模型仍可基于曾获得的恰当信号值进行分类。
127.信号值可同时获得,或至少在相同帧或时间窗口内获得。在时间窗口(例如,每一秒、0.5s或100ms)之内获得的信号值可用作一组信号值。在时间窗口内接收到信号值的确切时间可用于提供给机器学习模型。
128.在一些实施方案中,可多次执行分类,每次分类都可能具有相关联的概率,例如,基于机器学习模型的度量与分隔不同分类的分界值的距离。可以使用概率的平均值来确定最终分类。在其他实施方案中,可使用多数投票过程,从而选择在n个分类测量值中出现次数最多的分类。
129.在框1240处,特定区域被提供给车辆的控制单元,从而使得控制单元能够执行车辆的规定操作。框1240可以与图8的框840类似的方式执行。结果显示,在识别移动设备在车辆内部时有至少98%的准确性,在精确识别移动设备在车辆附近的外部区域中时有至少93%的准确性。
130.在一些实施方案中,滤波算法(例如,卡尔曼滤波算法)可用于位置的长程确定(例如,仅使用rf信号),并且机器学习模型可用于准确地确定移动设备在哪个区域之内,例如,当移动设备更靠近车辆时。又如,这两种技术可同时运行,并且每个输出的可靠性可用于动态地选择要使用哪个。对于卡尔曼滤波算法,信号值可在获得相应测量时逐个使用,并且该滤波算法可在接收到每个新信号值时做出新的确定。
131.其他信息可用作机器学习模型的输入特征,例如,座椅传感器、车门打开等。另选地,此类其他信息可被用作后期滤波算法以确认不存在矛盾信息,例如,指示用户不在汽车内的测量值。
132.v.在识别和认证之后确定意图
133.在一些实施方案中,移动设备可始终以低功率模式(例如,使用btle)侦听特定频带中的信号。如果该频带中存在一定水平的信号,则移动设备可醒来并分析该信号。在一些具体实施中,检测到的信号可包括加密消息和/或移动设备要加密的随机值。移动设备可存储加密密钥(对称或非对称的),该加密密钥可对加密消息解密以便确认消息的预期值,从而认证车辆。可使用相同或不同的密钥加密随机值,该随机值可被发送到车辆以便车辆认证移动设备。该消息传输可通过rf(例如,在400-700mhz下)进行。
134.车辆可响应于一个或多个触发(例如,与门把手、启动按钮、后备厢按钮或车辆的其他部分物理地交互)发射信号。在另一个具体实施中,车辆可在使用之后一定量时间内发射信号。
135.因此,在一些实施方案中,移动设备可宣告车辆可侦听并醒来的信号(例如,可在
btle中发生的信标信号)。另选地,车辆可宣告信号,并且移动设备可连续地侦听。
136.一旦通信开始,即可执行测距,如本文所述。此类测距可一开始由rf来执行,并且在一些实施方案中,稍后使用磁性天线来执行。切换为使用磁性技术可取决于位置或位置随时间推移的变化(例如,显示用户的意图)。用户的意图还可用于使得车辆控制单元能够执行操作。为了确定用户的意图,可随时间推移跟踪运动的变化。例如,在(例如,使用rf协议)开始测距后,可通过在多个时间执行飞行时间测量来跟踪距离的变化。
137.例如,如果移动设备的运动(随时间变化的位置)与汽车成相对直线(例如,在15
°
的角度之内),则可推断为使用汽车的意图。这种运动跟踪可仅需要几英尺(例如,1m或更小)的精度。可使用不同的rf天线对该位置进行三角测量,以便可确定运动轨迹,而不只是仅改变距离。此类意图可允许汽车更快速地作出反应,而不是要求用户首先与汽车物理地交互。在一些具体实施中,运动轨迹可用于识别设备正在接近的汽车的特定部分,例如,后备厢、驾驶员车门或特定乘客车门。
138.因此,一些实施方案可以在多个时间确定移动设备的位置,从而获得移动设备在车辆外部的多个位置。多个位置或多个位置的差异可被提供给车辆的控制单元,从而使得控制单元能够基于移动设备朝向车辆的运动来执行车辆的预备操作(例如,打开灯)。
139.vi.示例性设备
140.图13为根据一些实施方案的示例设备1300的框图,该设备可以是移动设备。设备1300通常包括计算机可读介质1302、处理系统1304、输入/输出(i/o)子系统1306、无线电路1308、以及包括扬声器1350和麦克风1352的音频电路1310。这些部件可通过一个或多个通信总线或信号线1303而被耦接。设备1300可为任何便携式电子设备,包括手持式计算机、平板电脑、移动电话、膝上型计算机、平板设备、媒体播放器、个人数字助理(pda)、钥匙扣卡、车钥匙、门禁卡、多功能设备、移动电话、便携式游戏设备、汽车显示单元等,其包括这些物品中的两个或更多个物品的组合。
141.显然,图13所示的架构仅为设备1300的架构的一个示例,并且设备1300可具有比所示更多或更少的部件或不同的部件配置。图13中所示的各种部件可以硬件、软件或硬件和软件两者的组合来实现,其包括一个或多个信号处理电路和/或专用集成电路。
142.无线电路1308用于通过无线链路或网络来向一个或多个其他设备的常规电路(诸如,天线系统、rf收发器、一个或多个放大器、调谐器、一个或多个振荡器、数字信号处理器、codec芯片组、存储器等)发送和接收信息。无线电路1308可使用各种协议,例如本文所述的协议。例如,无线电路1308可具有用于一种无线协议(例如,)的一个部件和用于另一种无线协议(例如,uwb)的单独部件。不同的天线可用于不同的协议。
143.无线电路1308经由外围设备接口1316而被耦接至处理系统1304。接口1316可包括用于建立并保持外围设备和处理系统1304之间的通信的常规部件。通过无线电路1308所接收的语音信息和数据信息(例如,在语音识别或语音命令应用中)经由外围设备接口1316而被发送至一个或多个处理器1318。一个或多个处理器1318可被配置为处理被存储在介质1302上的一个或多个应用1334的各种数据格式。
144.外围设备接口1316将设备的输入外围设备和输出外围设备耦接到处理器1318和计算机可读介质1302。一个或多个处理器1318经由控制器1320与计算机可读介质1302进行通信。计算机可读介质1302可为能够存储代码和/或数据以供一个或多个处理器1318使用
的任何设备或介质。介质1302可包括存储器分级结构,包括高速缓存、主存储器和辅存储器。
145.设备1300还可包括用于为各种硬件部件供电的电力系统1342。电力系统1342可包括电力管理系统、一个或多个电源(例如,电池、交流电(ac))、再充电系统、电力故障检测电路、功率变换器或逆变器、电源状态指示器(例如,发光二极管(led))、以及通常与移动设备中的电力的生成、管理和分配相关联的任何其他部件。
146.在一些实施方案中,设备1300包括相机1344。在一些实施方案中,设备1300包括传感器1346。传感器可以包括一个或多个加速度计、指南针、陀螺仪、压力传感器、音频传感器、光传感器、气压计等。传感器1346可用于感测各位置方面,诸如位置的听觉标记或光标记。
147.在一些实施方案中,设备1300可包括gps接收器、全球导航卫星系统(glonass)、北斗、伽利略和设备的其他组合,有时称为gps单元1348。移动设备可使用卫星导航系统诸如全球定位系统(gps)来获取定位信息、定时信息、高度、或其他导航信息。在操作期间,gps单元可接收来自绕地球飞行的gps卫星的信号。gps单元对信号进行分析,以对传输时间和距离进行估计。gps单元可确定移动设备的当前定位(当前位置)。基于这些估计,移动设备可确定位置方位、高度、和/或当前速度。位置方位可为地理坐标,诸如纬度信息和经度信息。
148.一个或多个处理器1318运行被存储在介质1302中的各种软件部件,以执行设备1300的各种功能。在一些实施方案中,软件部件包括操作系统1322、通信模块(或指令集)1324、定位模块(或指令集)1326、距离模块1328(例如,包括用于分析或控制rf测距芯片或lf芯片的软件,可能包括机器学习模型)和其他应用(或指令集)1334。距离模块1328可向/从例如连接到无线电路1308的天线发送/接收测距消息。这些消息可用于各种目的,例如用于识别车辆的发送天线、确定消息的时间戳(例如,用于发送至车辆),并且潜在地确定移动设备1300与车辆的距离。例如,距离模块1328可包括机器学习模块1140。
149.操作系统1322可为任何合适的操作系统,包括ios、mac os、darwin、rtxc、linux、unix、os x、windows或嵌入式操作系统诸如vxworks。操作系统可包括用于控制和管理一般系统任务(例如,存储器管理、存储设备控制、电力管理等)的各种程序、指令集、软件部件、和/或驱动器,并且促进各种硬件和软件部件之间的通信。
150.通信模块1324帮助通过一个或多个外部端口1336或经由无线电路1308与其他设备进行通信,并且包括用于处理从无线电路1308和/或外部端口1336接收的数据的各种软件部件。外部端口1336(例如,usb、火线、闪电连接器、60引脚连接器等)适用于直接地或通过网络(例如,互联网、无线局域网等)间接地耦接至其他设备。
151.位置/运动模块1326可帮助确定移动设备1300的当前位置(例如,坐标或其他地理位置标识符)和运动。位置/运动模块可包括机器学习模块,并且涉及更标准的位置功能。现代定位系统包括基于卫星的定位系统,诸如全球定位系统(gps)、基于“小区id”的蜂窝网络定位、和基于wi-fi网络的wi-fi定位技术。gps还依赖于多个卫星的可见度来确定位置估计,其在室内或在“城市峡谷”中可能是不可见的(或具有微弱信号)。在一些实施方案中,位置/运动模块1326从gps单元1348接收数据并分析信号,以确定移动设备的当前位置。在一些实施方案中,位置/运动模块1326可使用wi-fi或蜂窝位置技术来确定当前位置。例如,可使用对附近小区地点和/或wi-fi接入点的了解及对它们的位置的了解来估计移动设备的
位置。识别wi-fi或蜂窝式发射器的信息被接收在无线电路1308处并传送至位置/运动模块1326。在一些实施方案中,位置模块接收一个或多个发射器id。在一些实施方案中,可将发射器id的序列与参考数据库(例如,小区id数据库、wi-fi参考数据库)进行比较,该参考数据库将发射器id映射或关联至对应发射器的位置坐标,并基于对应发射器的位置坐标来计算设备1300的估计位置坐标。不论使用何种特定定位技术,位置/运动模块1326均可接收能够从其中得出位置方位的信息,解译该信息,并返回位置信息,诸如地理坐标、纬度/经度、或其他位置方位数据。
152.位于移动设备上的一个或多个应用1334可包括安装在设备1300上的任何应用,包括但不限于浏览器、通讯录、联系人列表、电子邮件、即时消息、文字处理、键盘仿真、桌面小程序、支持java的应用、加密、数字版权管理、语音识别、语音复制、音乐播放器(回放存储在诸如mp3或aac文件的一个或多个文件中的录制音乐),等等。
153.可存在其他模块或指令集(未示出),诸如图形模块、时间模块等。例如图形模块可以包括用于在显示器表面上对图形对象(包括但不限于文本、网页、图标、数字图像、动画等)进行呈现、动画显示和显示的各种常规软件部件。在另一个示例中,定时器模块可为软件定时器。也可在硬件中实现定时器模块。时间模块可针对任意数量的事件来维持各种定时器。
154.i/o子系统1306可被耦接至可为触敏显示器的显示系统(未示出)。显示器在gui中向用户显示视觉输出。视觉输出可包括文本、图形、视频、以及它们的任何组合。视觉输出中的一些或所有视觉输出可对应于用户界面对象。尽管显示器可使用led(发光二极管)技术、lcd(液晶显示器)技术或lpd(发光聚合物显示器)技术,但在其他实施方案中可使用其他显示技术。
155.在一些实施方案中,i/o子系统1306可包括显示器和用户输入设备诸如键盘、鼠标和/或触控板。在一些实施方案中,i/o子系统1306可包括触敏显示器。触敏显示器还可基于触觉和/或触感接触来接受来自用户的输入。在一些实施方案中,触敏显示器形成用于接受用户输入的触敏表面。触敏显示器/表面(连同介质1302中的任何相关联的模块和/或指令集)检测触敏显示器上的接触(和接触的任何移动或释放),并将所检测到的接触转换为与用户界面对象的交互,诸如在接触发生时被显示在触摸屏上的一个或多个软键。在一些实施方案中,触敏显示器和用户之间的接触点对应于用户的一个或多个手指。用户可使用诸如触笔、笔、手指等任何合适的物体或附属件接触触敏显示器。触敏显示器表面可使用任何合适的触敏技术来检测接触及其任何移动或释放,这些技术包括电容式技术、电阻式技术、红外技术和表面声波技术、以及其他接近传感器阵列或其他元件,用于确定与触敏显示器的一个或多个接触点。
156.此外,i/o子系统还可被耦接至一个或多个其他物理控制设备(未示出),诸如按钮、按键、开关、摇杆按钮、拨号盘、滑动开关、操作杆、led等,用于控制或执行各种功能,诸如功率控制、扬声器音量控制、电话铃声响度、键盘输入、滚动、保持、菜单、锁屏、清除和结束通信等。在一些实施方案中,除了触摸屏之外,设备1300可包括用于激活或去激活特定功能的触控板(未示出)。在一些实施方案中,触控板是设备的触敏区域,与触摸屏不同,该触敏区域不显示视觉输出。触控板可为与触敏显示器分开的触敏表面、或者为由该触敏显示器形成的触敏表面的延伸部。
157.在一些实施方案中,可使用在用户的设备上执行的应用来执行本文描述的一些或全部操作。电路、逻辑模块、处理器和/或其他部件可被配置为执行本文描述的各种操作。本领域的技术人员应当理解,根据具体实施,可通过特定部件的设计、设置、互连、和/或编程来完成此类配置,并且再次根据具体实施,所配置的部件可针对不同操作为可重新配置的或不是可重新配置的。例如,可通过提供适当的可执行代码来配置可编程处理器;可通过适当地连接逻辑门和其他电路元件来配置专用逻辑电路;等等。
158.在本专利申请中所描述的任何软件部件或功能可被实现为由处理器执行的软件代码,该处理器使用任何合适的计算机语言,诸如例如java、c、c 、c#、objective-c、swift、或使用例如常规的或面向对象的技术的脚本语言诸如perl或python。软件代码可作为一系列指令或命令而被存储在计算机可读介质上,以实现存储和/或传输。适当的非暂态计算机可读介质可包括随机存取存储器(ram)、只读存储器(rom)、诸如硬盘驱动器或软盘的磁介质、或诸如光盘(cd)或dvd(数字通用光盘)的光学介质、闪存存储器等。计算机可读介质可为此类存储设备或传输设备的任何组合。
159.结合实施方案的各种特征的计算机程序可在各种计算机可读存储介质上编码;合适的介质包括磁盘或磁带、光学存储介质,例如光盘(cd)或dvd(数字通用光盘)、闪存存储器等。编码有程序代码的计算机可读存储介质可与兼容设备一起被封装或从其他设备单独被提供。此外,可以经由符合多种协议的有线光学和/或无线网络(包括互联网)编码和传输程序代码,从而允许例如经由互联网下载进行分发。任何此类计算机可读介质可驻留在或位于单个计算机产品(例如,固态驱动器、硬盘驱动器、cd或整个计算机系统)内,并且可存在于或位于系统或网络内的不同计算机产品内。计算机系统可包括监视器、打印机或用于将本文所提及的任何结果提供给用户的其他合适的显示器。
160.尽管已相对于具体实施方案描述了本发明,但应当理解,本发明旨在覆盖以下权利要求范围内的所有修改形式和等同形式。
161.除非明确地做出相反指示,否则对“一个”、“一种”或“该”的表述旨在表示“一个或多个”。除非明确地做出相反指示,否则对“或”的使用旨在表示“包容性或”而不是“排他性或”。提及“第一”部件并不一定要求提供第二部件。此外,除非明确表述,否则提及“第一”部件或“第二”部件不会将所提及的部件限制到特定位置。术语“基于”意在表示“至少部分地基于”。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献