一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种双功能FeCo2O4-CdS管状微马达及其制备方法和应用

2022-09-04 05:17:13 来源:中国专利 TAG:

一种双功能feco2o
4-cds管状微马达及其制备方法和应用
技术领域
1.本发明属于催化剂技术领域,具体涉及一种双功能feco2o
4-cds管状微马达及其制备方法和应用。


背景技术:

2.工业化的快速步伐已经导致有害污染物的过度排放,为了保护人类健康和环境,需要通过生物、物理或化学处理对污染物进行适当的处理。然而,这些过程的效率受到扩散质输运的限制,并且需要外部的搅拌手段来提高效率。纳米技术的新兴应用为环境修复过程增加了一个新的维度。特别是能够将外界能量转化为自身动能的微纳米马达,在利用主动运动克服处理操作的扩散限制方面具有相当大的潜力。这种微尺度物体的连续运动可以在没有外部搅拌的情况下实现显著的混合,从而提高效率,缩短清理时间。
3.酚类污染物具有致畸、致癌和致畸性,对人体及生态环境等造成巨大危害。作为酚类污染物的一种,邻苯二酚(catechol,cc),被应用于各个领域,容易造成环境中残留的问题。因此,对水中有毒物质cc进行检测和去除,保护饮用水安全,与我们的健康息息相关,是十分紧迫和有意义的。cc的检测方法多种多样,如电化学法,高效液相色谱法等。但上述方法存在成本高、操作繁琐、无法实时监控等缺点。比色检测因其成本低,选择性高、快速、便捷被广泛用于酚类的检测。
4.由于cc分子结构稳定,传统的膜过滤、活性炭吸附和生物降解等技术均不能有效降解cc。fenton技术作为一种高级氧化工艺(aops),在环境保护和污染修复领域日益受到重视。然而,fenton技术需要外部添加h2o2,且对有机污染物的矿化程度低,严重阻碍了其广泛应用。值得注意的是,原位生成和利用h2o2可以大大降低h2o2合成、运输和储存的风险和成本。为此,提出了光催化与fenton技术相结合的方法,利用可见光照射下原位生成的h2o2,通过fenton反应生成
·
oh,fe(iii)可被光生电子有效地还原,从而获得较高的降解活性。


技术实现要素:

5.针对现有技术中存在的邻苯二酚降解困难问题。本发明提供了一种双功能feco2o
4-cds管状微马达及其制备方法和应用,以天然木棉为模板,在h2o2及feco2o4、cds存在下产生大量的活性基团,在可见光照射下可原位生成h2o2,提高了过氧化氢的利用率,同时与微马达的自主运动相结合,实现了对cc的高灵敏检测和有效降解。
6.本发明通过以下技术方案实现:一种双功能feco2o
4-cds管状微马达的制备方法,包括以下步骤:(1)碳化木棉的制备:将木棉在氮气气氛下碳化得碳化木棉微管,碳化后在形成铁酸钴时溶液fe2 、co2 等较容易在碳表面形核生长;(2)feco2o4微管的制备:将硫酸铁、硝酸钴、尿素和氟化铵加入至水中形成混合溶液,加入步骤(1)中制备的碳化木棉微管,水热反应,生成物洗涤、干燥得feco2o4前驱体,feco2o4前驱体经高温煅烧得feco2o4微管;
(3)feco2o4管状微马达制备:向高锰酸钾溶液中加入feco2o4微管进行水热反应,生成物经洗涤、干燥得feco2o4管状微马达;(4)双功能feco2o
4-cds管状微马达的制备:将硝酸镉和硫脲加入至水中得混合溶液,加入feco2o4管状微马达后进行水热反应,生成物经洗涤、干燥得双功能feco2o
4-cds管状微马达。
7.进一步地,步骤(1)中所述的碳化条件为:升温至900℃保温1h,升温速率为5℃/min。
8.进一步地,步骤(2)中所述的硫酸铁、硝酸钴、尿素和氟化铵的摩尔比为1:2:5:2,所述的碳化木棉微管的加入量为每50mg/mmol硫酸铁;步骤(3)中所述的高锰酸钾与feco2o4微管的质量比为1:3;步骤(4)中所述的硝酸镉和硫脲的摩尔比为1:3,所述的feco2o4管状微马达的加入量为100mg/mmol硝酸镉。
9.进一步地,步骤(2)中所述的硫酸铁为feso4·
7h2o,所述的硝酸钴为co(no3)2·
6h2o;步骤(4)中所述的硝酸镉为cd(no3)2·
4h2o。
10.进一步地,步骤(2)中所述的水热反应条件为140 ℃保温7 h,所述的高温煅烧条件为400 ℃保温2 h;步骤(3)中所述的水热反应条件为140 ℃保温4 h;步骤(4)中所述的水热反应条件为180 ℃保温2 h。
11.进一步地,步骤(1)中对碳化后的木棉进行清洗、干燥,具体方法为用稀盐酸冲洗数次,再用乙醇、蒸馏水清洗数次,80 ℃下烘干过夜;步骤(2)~(4)中的洗涤方式为蒸馏水、无水乙醇洗涤,干燥方式为60℃烘干过夜。
12.本发明中,通过上述制备方法制备得到的双功能feco2o
4-cds管状微马达;以自然界中存在的天然中空管状木棉为模板,对其进行碳化,通过水热方法,在碳化木棉微管表面合成了feco2o4微球;然后通过水热过程将mno2纳米片负载到碳化木棉管和部分feco2o4微球的表面,作为马达的动力单元;最后,通过简单的水热反应将cds纳米颗粒负载在材料的表面,可以利用光增强材料的催化作用,并且能够原位生成少量的h2o2,得到双功能feco2o
4-cds管状微马达本发明中,所述的双功能feco2o
4-cds管状微马达在比色检测和催化降解有机污染物中的应用。
13.进一步地,所述的有机污染为邻苯二酚。
14.进一步地,所述的双功能feco2o
4-cds管状微马达在双氧水存在下实现驱动该微纳马达可以在含双氧水的水体中实现对有机污染物的快速检测和降解,在不对环境造成二次污染的前提下,实现了对水体的修复和净化。该微马达在可见光照射下可原位生成过氧化氢,提高了过氧化氢的利用率。在少量外加h2o2条件下,mno2将h2o2分解为氧气和水,氧气气泡从管状马达的一端连续冒出,推动马达自主运动,在双氧水及feco2o4、cds存在下产生大量的活性基团,实现了对cc的高灵敏检测和有效降解。微马达的自主运动提供了流体混合,加速了材料与目标污染物的接触。此外,该微马达具有磁性,可以在磁导向下向特定区域移动,且实现了材料的磁回收。
15.有益效果本发明以天然木棉为模板,制备了集检测、降解于一体的双功能feco2o
4-cds管状微马达,该微马达在h2o2及feco2o4、cds存在下产生大量的活性基团,同时与微马达的自主
运动相结合,实现了对cc的高灵敏检测和有效降解,且在可见光照射下可原位生成h2o2,提高了过氧化氢的利用率;该微马达可以在磁导向下向特定区域移动,且实现了材料的磁回收,其应用可以扩展到其他污染物的检测和去除,为环境修复提供了新的可能性。
附图说明
16.图1为双功能feco2o
4-cds管状微马达的xrd图谱;图2为双功能feco2o
4-cds管状微马达的sem图,(a)为碳化木棉纤维的sem图,(b-d)为feco2o4微管的sem图,(e-g)为feco2o4管状微马达的sem图,(h)和(i)为feco2o
4-cds管状微马达的sem图;图3为双功能feco2o
4-cds管状微马达的eds-mapping和tem图,(a-g)为feco2o
4-cds管状微马达的eds-mapping图,(h)和(i)分别为不同放大倍数下的feco2o
4-cds管状微马达的tem图;图4为双功能feco2o
4-cds管状微马达在不同浓度双氧水溶液中的延时图像,每幅图像间隔3 s,(a-c)对应的h2o2浓度为1%,(d-f)对应的h2o2浓度为3%,(g-i)对应的h2o2浓度为5%;图5为双功能feco2o
4-cds管状微马达在5%浓度双氧水溶液中的磁导向运动延时图像,每幅图像间隔1 s;图6为双功能feco2o
4-cds管状微马达比色检测cc的图谱,(a)为feco2o
4-cds微马达对不同浓度cc检测的紫外-可见吸收光谱图,(b)为邻苯二酚检测的标准曲线;图7为不同材料对cc的降解率随时间变化的关系图;图8不同h2o2浓度及ph下feco2o
4-cds管状微马达对cc的降解图,(a)为不同h2o2浓度对cc降解率的影响随时间变化的关系图,图8(b)为不同ph对降解率的影响随时间变化的关系图;图9为双功能feco2o
4-cds管状微马达的降解机理图。
具体实施方式
17.下面将对本发明实施例中的技术方案进行清楚、完整的描述,所描述的实施例仅是本发明部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
18.实施例1(1)碳化木棉的制备:称取1 g的木棉在管式炉中氮气保护下,以5 ℃/min的升温速率,900 ℃保温1 h,降温后用5%稀盐酸冲洗数次,再用乙醇、蒸馏水清洗数次,80 ℃下烘干过夜,得到碳化木棉微管;(2)feco2o4微管的制备:将278 mg feso4·
7h2o、582 mgco(no3)2·
6h2o、300 mg尿素和74 mgnh4f加入30 ml去离子水中,形成混合溶液,加入步骤(1)中制备的碳化木棉微管50 mg,搅拌30 min,溶液由红色变为橙色,混合溶液加入到50 ml聚四氟乙烯反应釜中进行水热反应,140 ℃保温7 h,用滤纸收集生成物,蒸馏水、无水乙醇洗涤数次,60 ℃烘干过夜,得到的feco2o4前驱体置于管式炉中,空气气氛下以2.5 ℃/min的升温速率到400 ℃,保温2 h,自然冷却至室温得feco2o4微管;
(3)feco2o4管状微马达制备:向高锰酸钾溶液(50 mg k2mno4加入到30 ml去离子水中)中加入150 mg feco2o4微管,混合后加入到反应釜中进行水热反应,140 ℃保温4 h,用滤纸收集生成物,蒸馏水、无水乙醇洗涤数次,60 ℃烘干过夜,得feco2o4管状微马达;(4)双功能feco2o
4-cds管状微马达的制备:将称取46.27mgcd(no3)2·
4h2o和34.25 mg硫脲加入到30 ml去离子水中,得到混合溶液,加入150 mg feco2o4管状微马达后转入反应釜中,进行水热反应,180 ℃保温2 h,用滤纸收集生成物,蒸馏水、无水乙醇洗涤数次,60 ℃烘干过夜,得双功能feco2o
4-cds管状微马达。
19.实施例1制备的双功能feco2o
4-cds管状微马达的表征图如图1~3所示:图1为所制备的双功能feco2o
4-cds管状微马达的中间产物及最终样品的xrd图谱。从图中可以看出,2θ=18.9
°
, 31.2
°
, 36.7
°
, 44.6
°
, 55.5
°
, 59.2
°
和65.1
°
的衍射峰分别对应于feco2o4的(111),(220),(311),(400),(422),(511)和(400)晶面;2θ=37.1
°
, 40.6
°
, 42.4, 56.0
°
, 66.8
°
, 75.0
°
和78.9
°
的衍射峰分别对应于mno2(pdf# 30-0820)的(100),(002),(101),(102),(110),(103)和(200)晶面;2θ=26.5
°
, 30.8
°
, 43.9
°
, 52.1
°
, 54.6
°
, 64.0
°
和70.4
°
的衍射峰分别对应于cds(pdf# 10-0454)的(111),(200),(220),(311),(222),(400)和(331)晶面。由此可见,feco2o
4-cds管状微马达已成功合成。
20.图2为双功能feco2o
4-cds管状微马达的sem图。如图2(a)所示,碳化木棉纤维表面较为光滑,为中空管状结构,直径约为15 μm;图2(b-d)是在碳化木棉微管上生长feco2o4后的sem图,由图可看出,feco2o4以球状颗粒附着在碳化木棉微管表面,大小较为均匀,在100-500 nm之间;由图2(d)可以看到,碳化木棉管上有一些孔,是由于400 ℃空气条件下煅烧得到feco2o4时造成的,经过进一步水热反应,mno2纳米片均匀的生长在材料表面。由于feco2o4纳米球没有完全覆盖碳化木棉表面,mno2纳米片不仅在部分feco2o4微球表面形成,在暴露的碳化木棉表面也会形成一层,如图2(e-g)所示;图2(h)和2(i)为feco2o
4-cds管状微马达的sem图,可以清楚的看到,cds纳米点沉积在mno2纳米片和feco2o4微球表面。
21.图3为双功能feco2o
4-cds管状微马达的eds-mapping和tem图。由图3(a-g)可以看出,feco2o
4-cds管状微马达表面含有c、o、co、fe、mn、cd和s七种元素,各元素较为均匀,对应于微马达的各组成部分,与xrd结果一致;图3(h)和3(i)为feco2o
4-cds管状微马达的tem图谱,图中直径约300 nm的颜色较深的圆球为feco2o4球,这与sem结果相一致;图中颜色较浅的微管表面的纳米片可以归属于mno2纳米片,在样品的sem图谱中同样证明了这一点;另外,图中较为聚集的mno2纳米片表面和feco2o4球表面的纳米点为cds纳米点。
22.实施例2对实施例1制备的双功能feco2o
4-cds管状微马达在不同浓度h2o2溶液中的延时图像如图4所示,每幅图像间隔3 s。从图4中可以看出,微管的一端有大量气泡冒出,推动马达做类圆周运动。同时,改变液体中双氧水的浓度,得到马达在不同浓度燃料下的运动视频,通过计算,微马达在1%,3%, 5%和10%浓度双氧水条件下的速度分别为43.2
±
1.5, 132.7
±
7.2, 154.8
±
9.5和167
±
11.7 μm s-1

23.当微马达与磁性物质相结合时,通过外加磁场对马达的运动方向进行调控,不仅可以实现对马达工作区域的一个控制,而且很好的实现了磁回收的目的。图5为双功能feco2o
4-cds管状微马达在磁引导下的运动延时图像,图像间隔为1 s。在加入磁引导前,微马达做类圆周运动,当微马达运动3 s后,我们在旁边加入磁引导,很明显的,运动中的微马
达立刻改变原来运动方向,向磁铁所在方向调转。在这个过程中,我们不断改变磁铁所在的位置,可以看到,微马达一直跟着磁铁的方向运动,这为在将来的微马达工作中对其进行磁控运动和磁回收利用提供了基础。
24.实施例3(1) cc的比色检测构筑以双功能feco2o
4-cds微马达为催化剂的显色反应体系,用来比色检测邻苯二酚(cc)。显色反应体系如下:1 ml naac-hac缓冲溶液(ph 3.8),1 ml邻苯二酚(0-1 mm),1ml 4-aap(10 mm),500 μl h2o2(80 mm)和500 μlfeco2o
4-cds管状微马达(2 mgml-1
),室温下孵育10 min,在520 nm处用紫外-可见分光光度计测量显色体系的吸光度值。
25.图6为双功能feco2o
4-cds管状微马达对cc的比色检测结果。图6(a)显示了feco2o
4-cds管状微马达对不同浓度cc检测的紫外可见吸收光谱,由图可以看出,随着cc浓度的升高(0-1 mm),显色体系的颜色随之变深;图6(b)显示了cc的浓度与吸光度之间的关系,随着cc浓度的升高(0-1 mm),显色体系的吸光度增大,两者呈正相关关系,在cc浓度范围为0-1mm内,两者的线性方程为:y=0.914x 0.158,r2=0.99。根据3倍噪音比s/n=3计算得到feco2o
4-cds微马达对邻苯二酚的检测限(lod)为1.34 μm。
26.(2) cc的催化降解采用30 mg l-1
的邻苯二酚作为目标污染物,首先加入1 mg ml-1
的双功能feco2o
4-cds微马达,放置20 min,使催化剂能充分吸附邻苯二酚,然后加入浓度1%的h2o2,作用时间为180 min,在不同时间点取上清液,利用应用测试例(1)中的显色体系,利用紫外-可见分光光度计测试520 nm处的吸光度值,并根据cc标准曲线计算浓度。此外,还考察了不同材料、溶液ph以及不同h2o2浓度对降解效率的影响。
27.图7为不同材料在180 min内对cc的降解图。由图7可知,碳化木棉对cc的去除率为19%,由材料本身的吸附作用导致;feco2o4微管、feco2o4微马达以及feco2o
4-cds微马达对cc的去除率分别为51%、88.5%和89.5%,可以看出,微马达对cc的去除率远高于单独的feco2o4微管,由微马达的运动以及多种物质结合后氧化还原能力增强,产生更多的活性基团导致。当在降解过程中加上可见光时,feco2o
4-cds微马达对邻苯二酚的去除率可达到92.8%,由此可见,光的加入促进了微马达对cc的降解,光的加入促进了芬顿效应,以及cds表面h2o2的内生,提高了h2o2的利用效率,从而增强了微马达对邻苯二酚的降解效果。
28.图8为不同双氧水浓度及ph对降解的影响图。图8(a)为h2o2浓度对降解效率的影响,可以看出,当降解体系中只存在1% h2o2时,cc的去除率为17.5%;当降解体系中存在feco2o
4-cds微马达并且加入不同浓度双氧水(0.5%,1%,2%和3%)时,对邻苯二酚的去除率分别为79%,92.8%,95.7%和97.3%,远高于未加双氧水时(24.1%),说明h2o2的加入对邻苯二酚的降解起重要作用,h2o2的存在与

o2−


oh等活性物种的产生密切相关,在h2o2浓度范围0-3%内,随着浓度的增加,材料对cc的去除率增高。随后,探究了ph对降解效率的影响,结果如图8(b)所示,当反应体系的ph分别为3,5,7,9和11时,feco2o
4-cds微马达对邻苯二酚的去除率分别为93.7%, 95.4%, 92.8%, 81.7%和69.4%,结果表明,feco2o
4-cds微马达在酸性条件下具有较高的降解率,而在中性条件下微马达对cc的去除率也能达到92.8%,表明双功能feco2o
4-cds管状微马达在酸性甚至中性条件下对目标污染物都有较好的降解效果,而在碱性条件下微马达对邻苯二酚的降解效果略差,这可能与碱性条件下活性基团生成能力减弱
相关。
29.图9为双功能feco2o
4-cds管状微马达对cc的催化降解机理图,在含有h2o2的溶液中,通过mno2分解h2o2产生氧气,推动马达自主运动,提高了微马达与溶液中目标污染物的接触机会。在双功能feco2o
4-cds微马达中,feco2o4的导带电势低于比cds的导带电势,cds导带的光生电子跃迁到feco2o4导带,进而在碳管上聚集,cds价带位置留下空穴,有效的促进光生载流子的分离。cds导带电势(-0.52 ev)更负于o2的还原势(-0.28 ev),o2被电子还原成具有氧化性的

o2−
(式4.7)。同时溶液中的h2o2,还能捕获光生电子和在紫外光辐射下分解生成

oh(式4.8-4.9)。此外,feco2o4具有类芬顿活性,co
2
和fe
2
与h2o2发生类芬顿反应生成

oh,而光照可加速co
3
和fe
3
分别转换成co
2
和fe
2
(式4.10-4.11)。此外,微马达具有多孔结构及较大的比表面积,将溶液中的污染物吸附到自身表面,通过光芬顿反应,将目标污染物降解为二氧化碳和水等小分子无危害物质(式4.12)。涉及的机理反应式如下:。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献