技术新讯 > 有机化学装置的制造及其处理,应用技术 > 不对称合成的制作方法  >  正文

不对称合成的制作方法

  • 国知局
  • 2024-06-20 11:59:58

专利名称:不对称合成的制作方法本申请是美国专利申请No.07/748,112和07/748,111(申请日1991年8月21日)的后续申请。这两份申请都是与本申请相关的已知申请,在此供参考。本申请是涉及一种前手性化合物或手性化合物在存在旋光金属-配位体配合催化剂下接触进行不对称合成制备出一种旋光产物。不对称合成是很重要的,例如对制药业而言,因为通常仅一种旋光异构体(非对映体)是有治疗活性的。这样一种药用产品例子是非甾族的抗炎药物萘普生。S非对映体是一种有效的抗关节炎药剂,而R非对映体是一种肝毒素。因而常常希望在其镜像范围有选择地制备一种特定非对映体。人们已知为确保生产出所需非对映体必须采取特殊措施,因为制备出的常常是不旋光的外消旋混合物,也就是说等量的具有相反旋光性的每种镜像非对映体彼此相互抵消。为了从这样外消旋混合物中得到所需的非对映体或镜像立体异构体,必须将此外消旋混合物分离成其旋光组份。这种分离(又称为旋光拆开)可采用实际物理拣选、直接结晶外消旋混合物而进行,或采用现有技术的其它方法。这样的旋光拆开过程常常是费力和昂贵,又对所希望的非对映体有破坏。由于这些困难,人们日益关注非对称合成,在这种合成方式中获得其中一种非对映体量明显高于其他。有效的不对称合成预期能够保证控制区域选择性(支链/直链比例),如加氢甲酰化,和立体选择性。各种不对称合成催化剂已记载于现有技术中。例如Wink,Donald J.等人在Inorg.Chem.1990,29,5006-5008中记载了由氯代二噁磷烷中间体合成螯合双(二噁磷烷)配位体,证明了双亚磷酸铑阳离子的催化能力。由二氢苯偶姻衍生的配合物在烯烃的醛化中用作产物母体,得到一种外消旋混合物。双(二噁磷烷)配位体的阳离子型铑配合物用在氢化烯酰胺实验中,则得到非对映体过量2-10%。Pottier,Y,等人在Journal of Organometallic Chemistry,370,1989,333-342一文中描述了使用由氨基膦次磷酸配位体改性的铑催化剂条件下不对称加氢甲酰化苯乙烯。据报导对映选择性大于30%。东德专利No.275,623和No.280,473涉及手性铑碳水化合物-膦催化剂的制备。这些催化剂被说明可以作为立体有择催化剂用于进行碳-碳键形成、加氢甲酰化、氢化硅烷化、羰基化和氢化反应,制得旋光化合物。Stille,John k.等人在Organometallics 1991,10,1183-1189一文中涉及了合成铂Ⅱ的三种配合物,该配合物含有手性配位体1-(叔丁氧基羰基)-(2S,4S)-2-[(二苯基膦基)甲基]-4-(二苯并二氧磷基)吡咯烷、1-(叔丁氧基羰基)-(2S,4S)-2-[(二苯并二氧磷基)甲基]-4-(二苯基膦基)吡咯烷和1-(叔丁氧基羰基)-(2S,4S)-4-(二苯并二氧磷基)-2-[(二苯并二氧磷基)甲基]吡咯烷。苯乙烯的不对称加氢甲酰化是存在氯化亚锡作催化剂条件下用这三种配位体的铂配合物检验的。得到了各种支链/直链比例(0.5-3.2)和非对映过量值(12-77%)。当这些反应在存在原甲酸三乙酯条件下进行时,全部四种催化剂都具有实际上完全的对映选择性(ee>96%)和类似的支链/直链比例。研究更有效的不对称合成方法在本领域中一直进行着。人们总是期望不对称合成方法具有高产率的旋光产物而不需要旋光拆开过程。人们还期望旋光合成方法具有高立体选择性、高区域选择性(例如加氢甲酰化反应)以及好的反应速率这样一些特性。本发明是关于不对称合成反应,在该合成中一种前手性化合物或手性化合物在存在一种旋光金属配位体配合催化剂条件下进行反应制得一种旋光产物。本发明方法的显著优点在于,它们提供了高产率旋光产物,这些产物具有高立体选择性、高区域选择性(如加氢甲酰化)和良好的反应速率,而无需旋光拆开。本发明的方法立体选择性地产生一个手性中心。本发明方法的一大优点是旋光产物可由非旋光反应剂合成。其另一优点是,由于产出所不期望的对映体而致的产率损失可以充分地降低。本发明的不对称合成方法可用于制备各种旋光有机化合物,如醛、醇、醚、酯、胺、酰胺、羧酸等,它们有各种各样的用途。本发明还涉及到具有下面化学式的旋光配位体。 其中各W可相同或不同,可为磷、砷或锑;每个X可相同或不同,可为氧、氮或连接W和Y的共价键;Y是一个被取代的或未被取代的烃基;每个Z是相同或不同,可为一个取代的或未取代的烃基,或者键接于W上的Z取代基桥接一起形成一被取代的或未被取代的环状烃基;m是一个等于Y自由价的数值,前提条件是至少Y和Z的其中之一是旋光的。本发明还涉及到旋光金属配位体配合物催化剂,该催化剂包含与一种旋光配位体配合的金属,其具有下面化学式; 其中每个W可相同或不同,可为磷、砷、锑;每个X可相同或不同,可为氧、氮或连接W和Y的共价键;Y是被取代的或未被取代的烃基;每个Z可相同或不同,可为一被取代的或未被取代的烃基,或者键连在W上的Z取代基可以共同桥接,形成一被取代的或未被取代的环状烃基;m是等于Y的自由价的数值,前提条件是至少Y和Z其中之一是旋光的。本发明进而还涉及到由本发明的不对称合成方法制得的旋光产物。本发明的主题包括以一种不对称方式进行任何已知常规合成,在该合成中所用的催化剂由本发明所公开的旋光金属配位体配合物催化剂所代替。举例的不对称合成反应包括,如加氢甲酰化、加氢酰化(分子内和分子间)、氢氰化、烯烃和酮的氢化硅烷化、氢羧化、氢酰胺化、氢酯化、氢化、氢解、氨解、醇解、羰基化、脱羰基化、烯烃异构化、格利雅交叉偶合反应、转移氢化、烯烃硼氢化、烯烃环丙烷化、醛醇缩合、烯丙位烷基化、烯烃共二聚作用、狄耳斯-阿德耳反应和类似反应。如上所述。本发明的方法立体选择性地产生一手性中心。优选的不对称合成反应包括在存在催化量的一种旋光金属配位体配合催化剂条件下使有机化合物同一氧化碳反应,或者使有机化合物同一氧化碳和第三反应物,如氢进行反应。本发明的主题尤其涉及到在生产旋光醛类中使用一种旋光金属-磷配位体配合物催化剂和任选地游离配位体的不对称加氢甲酰化反应,在该反应中一前手性或手性烯烃化合物同一氧化碳和氢反应。所制得的旋光醛相当于通过在饱和烯烃键的同时将一羰基加成到起始物中烯烃化不饱和碳原子上所制得的化合物。本发明的操作技术相应于所有在常规不对称合成反应(包括不对称加氢甲酰化反应)中所采用的操作技术。例如,此不对称合成过程可以以连续、半连续或批量方式进行,根据需要有液体循环和/或汽体循环操作。本发明的方法最好以批量方式进行。而且,反应物成分、催化剂和溶剂的添加方式或次序也不是至关重要的,可以按任何常规的方式进行。一般来说,此不对称合成反应在液态反应介质中进行,该介质中含有旋光催化剂的溶剂,优选溶剂是反应组份连同催化剂都基本上可溶于其中。此外,希望本发明的不对称合成过程在有游离配位体以及旋光配合物催化剂条件下进行。“游离配位体”指的是在旋光配合物催化剂中没有同金属原子配合的配位体。如上所述,本发明的主题包括按不对称合成方式进行任何已知常规合成反应,其中合成所用的催化剂由本文所公开的一种旋光金属配位体配合物催化剂所替代。不对称分子内氢酰化反应可依据现有技术中已知的常规方法进行。例如,去除含有一个3至7个碳原子的烯烃基的醛在氢酰化条件下及存在本文所述旋光金属配位体配合物催化剂的情况下可转变成旋光环酮。不对称分子间氢酰化反应可用本领域已知的常规工艺进行。例如旋光酮可通过使前手性烯烃与醛在氢酰化条件下及存在一种如本文所述的旋光金属配位体配合物催化剂条件下进行反应而制备。不对称氢氰化反应可用本领域已知的常规工艺进行。例如,旋光腈化合物可通过使前手性烯烃化合物和氰化氢在氢氰化条件下及存在一种本文所述的旋光金属配位体配合物催化剂条件下进行反应而制备。不对称烯烃氢化硅烷化可用本领域已知的常规工艺进行。例如,旋光甲硅烷化合物可通过将一种前手性烯烃和一种甲硅烷化合物在氢化硅烷化条件下及存在本文所述的一种旋光金属配位体配合物催化剂下进行反应而制备。不对称酮氢化硅烷化可用本领域已知的常规工艺进行。例如,旋光甲硅烷基醚或醇可通过将一种前手性酮和一种甲硅烷基化合物在氢化甲硅烷基化条件下及存在一种本文中所述的旋光金属配位体配合物催化剂下进行反应而制备。不对称氢羧化反应可根据本领域已知常规工艺进行。例如,前手性烯烃可在氢羧化条件下及存在一种本文中所述的旋光金属配位体配合物催化剂的情况下转变成旋光羧酸。不对称氢酰胺化反应可根据本领域已知的常规工艺进行。如旋光酰胺的制备可通过将一种前手性烯烃、一氧化碳和伯胺或仲胺或氨在氢酰胺化条件下及存在一种本文中所述的旋光金属配位体配合物催化剂下进行反应。不对称氢酯化反应可根据本领域常规工艺进行。例如,旋光酯的制备可通过将一种前手性烯烃、一氧化碳和醇在氢酯化条件下及存在一种本文中所述的旋光金属配位体配合物催化剂下进行反应。不对称烯烃氢化及其它不对称氢化可根据本领域已知的常规进行。例如,氢化可用于将碳-碳双键还原成单键。其它双键也可氢化,例如酮可在氢化条件下及存在一种本文中所述的旋光金属配位体配合物催化剂下转变成旋光醇。不对称氢解可根据本领域已知的常规工艺进行,例如,旋光醇可通过将环氧化物与氢在氢解条件下及存在一种本文所述的旋光金属配位体配合物催化剂下进行反应而制备。不对称氨解可根据本领域已知的常规工艺进行。例如,旋光胺可通过将一种前手性烯烃同伯胺或仲胺在氨解条件下及存在一种如本文所述的旋光金属配位体配合物催化剂下进行反应而制备。不对称醇解可根据本领域已知的常规工艺进行。例如,旋光醇可通过将前手性烯烃同醇在醇解条件下及存在一种本文所述的旋光金属配位体配合物催化剂的情况下进行反应而制备。不对称羰基化反应可根据本领域已知的常规工艺进行。例如,旋光内酯可通过在羰基化条件下及存在一种本文所述的旋光金属配位体配合物催化剂下用一氧化碳处理烯丙醇而制得。不对称脱羰基化可根据本领域已知的常规工艺进行,例如,酰基氯或芳酰基氯在保留构型的脱羰基化条件下及存在一种本文所述的旋光金属配位体配合物催化剂的情况下可脱去羰基。不对称异构化可根据本领域已知的常规工艺进行。例如,烯丙醇可在产生旋光醛的异构化条件下及存在一种本文所述的旋光金属配位体配合物催化剂时异构化。不对称格利雅交叉偶合反应可根据本领域已知的常规工艺进行。例如,旋光产物可通过一种手性格利雅试剂同一种烷基卤或芳基卤在格利雅交叉偶合条件下及存在有一种本文所述的旋光金属配位体配合物催化剂下进行反应来制备。不对称转移氢化可根据本领域已知的常规工艺进行。例如,旋光醇可通过将一种前手性酮和一种醇在转移氢化条件下及存在一种本文所述的旋光金属配位体配合物催化剂下进行反应来制备。不对称烯烃硼氢化反应可根据本领域已知的常规方法进行。例如,旋光烷基硼烷或醇可通过将一种前手性烯烃和硼烷在硼氢化条件下及存在本文所述的一种旋光金属配位体配合物催化剂下进行反应来制备。不对称烯烃环丙烷化可根据本领域已知的常规工艺进行。例如,旋光环丙烷可通过将一种前手性烯烃和一种重氮化合物在环丙烷化条件下及存在一种本文所述的旋光金属配位体配合物催化剂下进行反应而制备。不对称醛醇缩合反应可根据本领域已知的常规工艺进行。例如,旋光醛醇可通过将一种前手性酮或醛和一种甲硅烷基烯醇醚在醛醇缩合条件下及存在一种本文所述的旋光金属配位体配合物催化剂下进行反应而制备。不对称烯烃共二聚反应可根据已知的本领域常规工艺进行。例如,旋光烃可通过将一种前手性烯烃和一种烯烃在共二聚条件下及存在一种本文所述的旋光金属配位体配合物催化剂下进行反应而制备。不对称烯丙位烷基化可根据本领域已知的常规工艺进行。例如,旋光烃可通过将一种前手性酮或醛和一种烯丙基烷基化剂在烷基化条件下及存在一种本文所述的旋光金属配位体配合物催化剂下进行反应而制备。不对称狄耳斯-阿德耳反应可根据本领域已知的常规工艺进行。例如,旋光烯烃可通过将一种前手性二烯烃和一种烯烃在环加成条件下及存在一种如本文所述的旋光金属配位体配合物催化剂下进行反应而制备。由本发明方法所包括的容许的前手性和手性起始反应物的选择当然取决于所需的不对称合成。这类起始物是本领域所熟知的,可根据常规的方法按常规用量使用。举例的起始反应物包括取代的或未取代的醛(分子内氢酰化、醛醇缩合、烯丙位烷基化)、前手性烯烃(加氢甲酰化、分子间氢酰化、氢氰化、氢化硅烷化、氢羧化、氢酰胺化、氢酯化、氨解、醇解、环丙烷化、硼氢化、狄耳斯-阿德耳反应、共二聚反应)、酮(氢化、氢化甲硅烷基化、醛醇缩合、转移氢化、烯丙位烷基化)、手性和前手性环氧化物(加氢甲酰化、氢氰化、氢解)、醇(羰基化)、芳基氯和芳酰基氯(脱羰基化)、手性格利雅试剂(格利雅交叉偶合)等。例举的用于本发明的特定不对称合成过程(如加氢甲酰化)中的烯烃起始反应物包括那些末端或内位不饱和的以及具有直链、支链或环状结构的烯烃。这类烯烃可含有4至40个碳原子或更多的碳原子,也可含有一个或多个烯键不饱和基团。并且这类烯烃可含有基本上不有害地干扰不对称合成过程的基团或取代基,例如羰基、羰酰氧基、氧基、羟基、氧化羰基、卤素、烷氧基、芳基、卤代烷基以及类似基团。举例的烯烃不饱和化合物包括被取代的和未被取代的α-烯烃、内烯烃、烷基链烯酸酯、链烯基链烷酸酯、链烯基烷基醚、链烯醇和类似物,如1-丁烯、1-戊烯、1-己烯、1-辛烯、1-癸烯、1-十二碳烯、1-十八碳烯、2-丁烯、异戊烯、2-戊烯、2-己烯、3-己烯、2-庚烯、环己烯、丙烯二聚物、丙烯三聚物、丙烯四聚物、2-乙基己烯、3-苯基-1-丙烯、1,4-己二烯、1,7-辛二烯、3-环己基-1-丁烯、烯丙醇、己-1-烯-4-醇、辛-1-烯-4-醇、乙烯基乙酸酯、乙酸烯丙酯、3-丁烯基乙酸酯、乙烯基丙酸酯、丙酸烯丙酯、丁酸烯丙酯、甲基丙烯酸甲酯、3-丁烯基乙酸酯、乙烯基·乙基醚、乙烯基甲基醚、乙基烯丙基醚、正丙基-7-辛烯酸酯、3-丁烯腈、5-己烯酰胺、苯乙烯、降冰片烯、α-甲基苯乙烯等。举例的优选烯烃不饱和化合物包括对异丁基苯乙烯、2-乙烯基-6-甲氧基-亚荼、3-乙烯基苯基二苯甲酮、4-乙烯基苯基-2-二噻吩基甲酮、4-乙烯基-2-氟代联二苯、4-(1,3-二氢-1-氧代-2H-异氮茚-2-基)苯乙烯、2-乙烯基-5-苯甲酰基噻吩、3-乙烯基苯基·苯基醚、丙烯基苯、异丁基-4-丙烯基苯、苯基.乙烯基醚、氯乙烯等。用于本发明的某些不对称合成过程中的适宜烯烃不饱和化合物包括记载于美国专利4,329,507中的取代的芳基乙烯、该文中公开的内容也参考合入本文。当然可以理解到如果本发明的不对称合成反应需要,则由不同烯烃起始原料组成的混合物也可以使用。较佳的是本发明特别适用于制备旋光醛,即对含有4至40个或更多个碳原子的α-烯烃和含有4或40个或更多个碳原子的内烯烃以及这类α-烯烃和内烯烃的原始混合物进行加氢甲酰化反应。用于本发明方法中的举例的前手性和手性烯烃包括以下面化学式表示的烯烃 其中R1、R2、R3和R4可相同或不同(条件是R1不同于R2,而R3不同于R4),可以选自氢;烷基;取代烷基,所述取代基选自氨基(包括烷基氨基和二烷基氨基,如苄氨基和二苄氨基)、羟基、烷氧基(如甲氧基和乙氧基)、酰氧基(如乙酰氧基)、卤代、硝基、氰基、硫代、羰基、羧酰胺、羧醛、羧基、羧酸酯;芳基(包括苯基);取代的芳基(包括苯基),所述取代基选自烷基、氨基(包括烷氨基和二烷氨基,如苄氨基和二苄氨基)、羟基、烷氧基(如甲氧基和乙氧基)、酰氧基(如乙酰氧基)、卤代、氰基、硝基、羧基、羧醛、羧酸酯、羰基和硫代,所述芳基取代低于4个取代基;酰氧基(如乙酰氧基);烷氨基如甲氧基和乙氧基;氨基(包括烷氧基和二烷氨基,如苄氨基和二苄氨基);酰氨基和二酰氨基(如乙酰苯氨基和二乙酰氨基);硝基;羰基,氰基;羧基;羧酰胺;羧醛;羧酸酯;以及烷巯基(如甲巯基)。可以理解到这里定义的前手性和手性烯烃还包括具有上面通式的而其中R基团彼此相联形成环状化合物的分子,例如3-甲基-1-环己烯和类似物。用于本发明的某些不对称合成反应(如加氢甲酰化)的举例的环氧化物起始反应物包括由下面化学式表示的物质 其中R5、R6、R7和R8是相同的或不同的(条件是R5不同于R6和/或R7不同于R8),它们可选自氢、含有1至约12个碳原子的一价的脂族基或芳族基,以及含有4至约6个碳原子的二价脂族基,其中容许的R5、R6、R7和R8的结合方式可以彼此键接形成一取代的或未取代的、诸如一元芳环或非芳环体系的碳环或杂环体系,如氧化环己烯。用于本发明中的特别环氧化物的实例包括氧化丙烯、1,2-环氧辛烷、氧化环己烯、氧化苯乙烯和类似物。用于本发明的旋光催化剂包括其中的配位体是旋光的旋光金属配位体配合物催化剂,最好是光学纯级的。构成此旋光金属配位体配合物的容许用金属包括Ⅷ族的金属,即选自铑(Rh)、钴(Co)、铱(Ir)、钌(Ru)、铁(Fe)、镍(Ni)、钯(Pd)、铂(Pt)、锇(Os)和其混合体,较优选的金属为铑、钴、铱和钌,更好是铑和铱,最好是铑。其它可用金属包括IB族金属,即选自铜(Cu)、银(Ag)、金(Au)和其混合体,还可选用ⅥB族金属,即选自铬(Cr)、钼(Mo)、钨(W)和其混合体。Ⅷ族、ⅠB族和ⅥB族金属的混合体也可用于本发明中。应当指出的是本发明的成功实践并不决取于,也不是基于此旋光金属配位体配合物的精确结构,它们可以单核、双核和/或更多核形式存在,先决条件是配位体是旋光的。的确,此确切的旋光结构并不是已知的。然而,这并不意味着受理论或机理文章的限制,很显然在使用时,此旋光催化剂物种可以最简单的形式实际上由与旋光配位体配合的金属和一氧化碳构成。本文和权利要求中所用术语“配合物”指的是一种配位化合物,该配位化合物是由一个或多个电负性高的分子或能够独立存在的原子同一个或多个电负性低的,且能够独立存在的分子或原子相结合而形成。例如本发明所用的优选旋光配位体(即磷配位体)具有一个或多个磷供电子原子,其中每个原子都有一对适宜电子或者一对未配对电子,而这对电子能够独立地或可能一齐(如通过螯合作用)同金属形成一配位共价键。由上述讨论可以推知,一氧化碳(其最好归入配位体类)也可以存在,并同金属配合。最终的旋光配合催化剂的组合物还可含有一种附加配位体,例如氢或使金属的配位部位和核电荷饱和的一种阴离子。举例的附加配位体包括卤素(Cl、Br、I)、烷基、芳基、被取代的芳基、酰基、CF3、C2F5、CN、R2PO和RP(O)(OH)O(其中每个R是烷基或芳基)、乙酸根、乙酰丙酮根、SO4、PF4、PF6、NO2、NO3、CH3O、CH2=CHCH2、C6H5CN、CH3CH、NO、NH3、吡啶、(C2H5)3N、单烯烃、二烯烃和三烯烃、四氢呋喃、以及类似物。自然应该理解到这些旋光配合物最好没有任何多余的有机配位体或阴离子,它们的存在可能会毒化催化剂,且对催化剂的性能产生不利的影响。在本发明的铑催化的不对称加氢甲酰化反应中最好是此有旋光性的催化剂不含有直接键联于铑上的卤素和硫,尽管这样也许并非绝对必要。在这类金属上适宜的配合位置的数目是本领域熟知的,因而此旋光物质可包括一种配合物催化剂混合物,它们以单体的、二聚的或多聚核的形式存在,其优选的特征在于每一个铑分子至少配合有一个含磷的分子。如上所述,可以想到,由于一氧化碳和氢气可用在不对称加氢甲酰化反应中,因而用于本发明中的不对称加氢甲酰化反应中的优选铑催化剂的旋光物质除了旋光磷配位体外还可与一氧化碳和氢气配合。这样,不管在引入反应区域之前预成型旋光配合催化剂,还是在反应过程中旋光物质原位制备,不对称合成反应,尤其是不对称加氢甲酰化反应都可在有游离配位体的条件下进行,尽管这样不是绝对必要。用于本发明中的配位体包括具有下面化学通式的旋光配位体, 其中每个W可相同或不同,可以是磷、砷或锑;每个X可相同或不同,可以是氧、氮或键联W和Y的共价键;Y是一个m价取代的或未取代的烃基;每个Z可以是相同或不同。可以是取代的或未取代的烃基,优选的烃基含有至少一个与W键接的杂原子,或者连接到W上的Z取代基可以桥接形成一取代的或未取代的环烃基,优选的环烃基是含有至少2个各自与W键接的杂原子,而m数值等于Y的自由价,优选的是1至6价,前提条件是至少Y和Z的其中之一是旋光的。参照上面的化学通式,可以理解到当m是2或更高的数值时,该配位体可以是满足Y价的允许的环烃基和/或无环烃基的任何组合体。人们还可以理解到由Z代表的烃基可以包括一个或多个杂原子,而这样的杂原子可直接键连于W上。包括在上述一般结构中的旋光配位体对本领域的技术人员而言是容易确定的。对于本发明的不对称加氢甲酰化反应的目的而言,当每个W是磷,而每个X是共价键时,则Z取代基不能都是具有一个碳原子直接键连在磷上的烃基。又,当Y是一个取代的2碳脂族链,m数值为2,两个W取代基都是磷,一个X取代基是氧,另一个X取代基是氮,那么Z取代基不能都是苯基。进而,当Y是一个取代的四氢吡喃,m数值为2,两个W取代基都是磷,两个X取代基都是氧,那么Z取代基不能都是芳基。对于本发明的新旋光配位体和新旋光金属-配位体配合催化剂而言,当每个W是磷,每个X是共价键时,那么Z取代基不能都是具有一个直接连接到磷的碳原子的烃基。又,当Y是一个取代的2碳脂族链,m是2,两个W取代基都是磷,一个X取代基是氧,而另一个X取代基是氮,则Z取代基不能都是苯基。进一步说,当Y是一取代的四氢吡喃,m为2,而两个W取代基都是磷,两个X取代基都是氧,那么Z取代基不能都是芳基。更进一步说,当Y是一个未被取代的3碳脂族链,m为2,两个X取代基都是氧,两个W取代基都是磷,那么与每个磷相连接的Z取代基不能桥接到一起形成取代的氧基-亚乙基-氧基基团。用于本发明中的举例的旋光配位体包括在下面化学式的配位体 其中W、Y、Z和m都如上定义,Y″′可以相同或不相同,可以是氢或者取代的或未取代的烃基。由上面化学式包括的举例的优选旋光配位体有,例如(多)亚磷酸盐、(多)次膦酸盐、(多)膦酸盐和类似物。示意说明的于本发明中可采用的较佳旋光配位体包括如下(ⅰ)通式如下的旋光多亚磷酸盐 其中每个Ar基团可相同或不同且为取代或未取代的芳基;Y′为m价取代或未取代的烃基,选自亚烷基、亚烷基-氧-亚烷基、亚芳基和亚芳基-(CH2)y-(Q)n-(CH2)y-亚芳基;每个y可相同或不同且值为0或1;每个n可相同或不同且值为0或1;每个Q可相同或不同且为取代或未取代的二价桥基,选自-CR1R2-、-O-、-S-、-NR3-、-SiR4R5-和-CO-,其中R1和R2可相同或不同且为氢或选自C1-C12烷基、苯基、甲苯基和茴香基的取代或未取代的基团,而R3、R4和R5可相同或不同且为选自氢或甲基的基团;m′值为2-6;(ⅱ)通式如下的旋光二有机亚磷酸酯 其中Y″为取代或未取代的一价烃基而Ar、Q、n、和y定义如上;(ⅲ)通式如下的旋光开端二亚磷酸酯 其中Ar、Q、n、Y、Y′和Y″都如上定义,且Y″可相同或不同。上面式中的如上定义的Ar和Y′基团的举例芳基包括含有6至18个碳原子的芳基部分,如亚苯基、亚萘基、亚蒽基和类似物。在上面化学式中,优选的m是从2至4,每个Y和n都为0,不过当n为1时,Q优选的是如上定义的-CR1R2-桥基,更为优选的是亚甲基(-CH2-)或亚烷基(-CHR2-),其中R2是一个1至12个碳原子的烷基(如甲基、乙基、丙基;异丙基、丁基、十二烷基等等),最好是甲基。在上面多亚磷酸盐配位体化学式中由Y′代表的m价烃基是含有2至30个碳原子的烃,其可选自亚烷基、亚烷基-氧-亚烷基、亚芳基和亚芳基-(-CH2-)y-(Q)n-(-CH2-)y-亚芳基,其中Q、n和Y都如上定义。所述基团的优选亚烷基部分含有2至18个碳原子,更好是含有2至12个碳原子,而所述基团的亚芳基部分最好含有6至18个碳原子。在上面开端二亚磷酸酯配位体式中由Y′代表二价桥基是含有2至30个碳原子的二价烃基,其可选自亚烷基、亚烷基-氧-亚烷基,亚芳基和亚芳基-(CH2-)y-(Q)n-(-CH2-)y-亚芳基,其中Q、n和Y都如上定义。所述基团的优选亚烷基部分含有2至18个碳原子,最好含有2至12个碳原子,而所述基团的亚芳基部分最好含有6至18个碳原子。在上面亚磷酸盐配位体化学式中的Y″所代表的烃基包括含有1至30个碳原子的一价烃基,其可选自烷基(包括直链或支链的伯、仲和叔烷基),例如甲基、乙基、正丙基、异丙基、戊基、仲戊基、叔戊基、2-乙基己基和类似物;芳基,如苯基、萘基和类似物;芳烷基如苄基、苯乙基、三苯甲基乙烷和类似物;烷芳基如甲苯基、二甲苯基和类似物;以及环烷基,如环戊基、环己基、环己基乙基类似物。优选的是Y″选自含有约1至30个碳原子的烷基和芳基,烷基优选的是含有1至18个碳原子,最好是1至10个碳原子,而芳基、芳烷基、烷芳基和环烷基优选的是含有6至18个碳原子。进而,尽管在上面开端位的二亚磷酸酯配位体化学式中的每个Y″可以不同于另一个,但优选的是它们相同。自然人们进而还可理解到在上面式中的芳基部分也可用不对本发明的方法产生不利影响的任何取代基所取代。举例的取代基包括含有1至18个碳原子的基团,如烷基、芳基、芳烷基、烷芳基和环烷基;烷氧基;甲硅烷基如-Si(R9)3和-Si(OR9)3;氨基如-N(R9)2;酰基如-C(O)R9;酰氧基如-OC(O)R9;碳酰氧基如-COOR9;酰氨基-C(O)M(R9)2和-N(R9)COR9;磺酰基,如-SO2R9;亚硫酰基如-SO(R9)2;亚硫酰基,如-SR9;膦酰基如-P(O)(R9)2;以及卤素、硝基、氰基、三氟甲基和羟基等,其中每个R9可以是一价烃基,如烷基、芳基、烷芳基、芳烷基和环烷基,但必须在氨基取代基中,如-N(R9)2,在一起的每个R9也可构成二价桥基,其可与氮原子一起形成杂环基因,在酰氨基取代基中,如-C(O)N(R9)2和-N(R9)COR9,与N相连接的每个R9也可为氢,而在膦酰基取代基中,如-P(O)(R9)2,其中一个R9可为氢。应当理解到在某一特定取代基中的各个R9基团可以是相同或不同的。这类烃取代基基团还可以接着被本文上面已例出的取代基所取代,前提条件是这种状况不致对本发明的方法产生不利影响。至少一种选自羧酸盐和磺酸盐的离子部分可以在上面化学式中的芳基部分的位置上被取代。更为优选的亚磷酸盐配位体是,在上面的化学式中由-(CH2)y-(Q)n-(CH2)y表示的桥基相联的两个Ar基是以相对于氧原子(将Ar基团与磷原子的氧原子)的邻位键连。同样优选的是在这样Ar基上的任何取代基可以相对氧原子的对位/或邻位在芳基上相键连,其中的氧原子将取代的Ar基连接到其磷原子上。在上面化学式中用Z、Y、Y″、和Y″′表示的举例单价烃基包括含有1至30个碳原子的取代或未取代的单价烃基,分别选自取代的或未取代的烷基、芳基、烷芳基、芳烷基和脂环基。而在所给式中的每个Z和Y″基团可以相同或不同,最好相同。用Z、Y、Y″和Y″′表示的更具体的举例单价烃基包括伯、仲和叔链烷基,如甲基、乙基、丙基、异丙基、丁基、仲丁基、叔丁基、新戊基、仲戊基、叔戊基、异辛基、2-乙基己基、异壬基、异癸基、十八烷基和类似物;芳基如苯基、萘基、蒽基和类似物;芳烷基如苄基、苯乙基类似物;烷芳基如甲苯基、二甲苯基,对-烷基苯基和类似物;脂环基包括环戊基、环己基,环辛基,环己基乙基,1-甲基环己基和类似物。较好的,未取代的烷基可以含1~18个碳原子,最好是1~10个碳原子,而未取代的芳基,芳烷基,烷芳基和脂环基最好包含6~18个碳原子。在Z,Y,Y″和Y″′基团中较好的是苯基和取代的苯基。在上述结构式中用Z,Y和Y′表示的二价烃基包括取代的或未取代的基团,它们选自亚烷基,-亚烷基-氧-亚烷基-、亚芳基、-亚芳基-氧-亚芳基-、脂环基、亚苯基、亚萘基、-亚芳基-(CH2)y(Q)n(CH2)y-亚芳基-、例如-亚苯基-(CH2)y(Q)n(CH2)y-亚苯基-和-亚萘基-(CH2)y(Q)n(CH2)y-亚萘基,其中Q,Y和n同上述定义。用Z、Y和Y′表示的更具体的举例的二价基团包括,例如1,2-亚乙基、1,3-亚丙基、1,6-亚己基、1,8-亚辛基、1,12-十二亚烷基、1,4-亚苯基、1,8-亚萘基、1,1′-二苯基-2,2′-二基、1,1′-二萘基-2,2′-二基、2,2′-二萘基-1,1′-二基等。亚烷基可以含2-12个碳原子,而亚芳基可以含6-18个碳原子。优选的Z是一个亚芳基,Y是一个亚烷基,Y′也是一个亚烷基。此外,上述结构式中由Z、Y、Ar、Y′和Y″表示的上述基团,可以进一步被任何取代基取代,只要不过份有害地影响本发明的预定效果。举例的取代基是,例如具有1-18个碳原子的一价烃基,如烷基、芳基、烷芳基、芳烷基、环烷芳和上面定义的另外一些基团。另外,也可以有各种其它取代基,包括,例如卤素,最好是C1和F,-NO2、-CN、CF3、-OH、Si(CH3)3、-Si(OCH3)3、-Si(C3H7)3、-C(O)CH3、-C(O)C2H5、-OC(O)C6H5、-C(O)OCH3、-N(CH3)2、-NH2、-NHCH3、-NH(C2H5)、-CONH2、-CON(CH3)2、-S(O)2C2H5、-OCH3、-OC2H5、-OC6H5、-C(O)C6H5、-O(叔-C4H9)、-SC2H5、-OCH2CH2OCH3、-(OCH2CH2)OCH3、-(OCH2CH2)3OCH3、-SCH3、-S(O)CH3、-SC6H5、-P(O)(C6H5)2、-P(O)(CH3)2、-P(O)(C2H5)2、-P(O)(C3H7)2、-P(O)(C4H9)2、-P(O)(C6H13)2、-P(O)CH3(C6H5)、-P(O)(H)(C6H5)、-NHC(O)CH3和类似物。另外,每一个Z、Y、Ar、Y′和Y″基团可以包含一个或更多的这些取代基团,它们在任何所给出的配位体分子中可以相同或不同。优选的取代基包括烷基和烷氧基,它们含有1-18个碳原子,最好是1-10个碳原子,特别是叔丁基和甲氧基。本发明配位体催化剂中所用旋光配位体尤其适用于不对称合成方法,特别是铑催化的不对称加氢甲酰化反应。例如,旋光磷配位体可使铑配合物具有良好稳定性,并且对各种可行的烯烃的加氢甲酰化反应具有良好的催化活性。还有,它们独特的化学结构使配位体具有非常好的稳定性,从而在不对称加氢甲酰化反应以及在储存过程中不发生副反应例如水解反应。用于本发明的新旋光配位体的一般类型的旋光配位体可以按本领域中已知的方法制备。例如,本发明中使用的旋光磷配位体可以通过一系列常规的卤化磷-醇或胺的缩合反应制备,在这些反应中醇或胺组分中至少有一个是旋光的或旋光纯的。这些缩聚反应的类型和实施的方法是本专业领域中熟知的。此外,可用于本发明的磷配位体,如果需要的话可采用常规分析技术容易地鉴别和表征,例如P31-核磁共振谱和快速原子轰击质谱法。如上所述,旋光性配位体可以用作旋光金属-配位体配合催化剂中的配位体,又可以在本发明的反应中的反应介质中用作游离配位体,另外,还应知道,在本发明所确定的方法中,尽管金属-配位体配合催化剂的旋光配位体和过量的游离配位体通常是相同类型的配位体,但是,如果需要的话不同类型的旋光性配位体和两种或更多种不同类型旋光性配位体的混合物也可用于给定方法中的任何目的。本发明的旋光金属-配位体配合催化剂可采用本专业中已知的方法来制备。参见美国专利4,769,498、4,717,775、4,774,361、4,737,588、4,885,401、4,748,261、4,599,206、4,668,651、5,059,710、和5,113,022、引证这些文献仅供参考。例如成型的氢化金属-羰基催化剂可以被制备出来并引入到不对称合成过程的反应介质中去。优选的是,本发明的金属-配位体配合催化剂可由金属催化剂母体制备,该母体引入反应介质中就地形成旋光催化剂。例如,铑催化剂母体如铑的二羰基乙酰丙酮化物、Rh2O3、Rh4(CO)12、Rh6(CO)16、Rh(NO3)3等,可与配位体一起被引入反应介质中就地形成旋光催化剂。在优选的具体例子中,Rh的二羰基乙酰丙酮化物用作铑母体,在一种溶剂存在下与一种磷配位体化合物反应形成一种具有催化作用的铑-磷配合物母体,它可任选地与过量游离磷配位体一起引入反应器中,就地形成旋光催化剂。无论如何,对于本发明的目的足以理解到在非对称合成和较理想的非对称加氢甲酰化反应的条件下,在反应介质中存在一种旋光金属-配位体配合催化剂。此外,很显然,在本发明指定反应的反应介质中的旋光配合催化剂的需要用量只是必须保证预定金属浓度所需用的最低用量,而这一用量是须用来催化所需的指定不对称合成反应的至少催化量金属的基础。一般说来,金属浓度范围从约1ppm到10,000ppm(依据游离金属计算)和催化剂中配位体与金属的摩尔比范围从约0.5∶1到约200∶1,这对大多数不对称合过程成来说是足够的。此外,在本发明的铑催化的不对称加氢甲酰化反应中,通常铑的优选使用范围是从约10到1000ppm,更好的范围是25到750ppm,(根据游离金属计算)。本发明的另一方面是在非对称合成中催化剂母体组合物的使用,该组合物基本上由溶性的金属-配位体配合物母体催化剂、有机溶剂和游离配位体构成。该母体组合物可通过形成金属起始原料、有机溶剂和游离的配位体的溶液来制备,所述金属起始原料例如是金属氧化物、氢化物、羰基化物或盐类(例如硝酸盐),它们可以与或不与本文所定义的旋光配位体配位结合在一起。可以使用任何适宜的金属起始原料,如铑的二羰基乙酰丙酮化物、Rh2O3、Rh4(CO)12、Rh6(CO)16、Rh(NO3)3、多亚磷酸铑羰基氢化物、铱羰基化物、多亚磷酸铱羰基氧化物、卤化锇、氯锇酸、锇羰化物、氢化钯、卤化亚钯、铂酸、卤化亚铂、钌羰基化物以及其它金属的盐类和C2-C16酸的羧酸盐,例如,氯化钴、硝酸钴、乙酸钴、辛酸钴、乙酸铁、硝酸铁、氟化镍、硫酸镍、乙酸钯、辛酸锇、硫酸铱、硝酸铑等等。当然,可以采用不对称合成方法中使用的任何适宜的溶剂。这种非对称合成方法当然也要确定在母体溶液中金属、溶剂和旋光配位体的不同用量。旋光配位体如果没有与原始金属配位,那么在非对称合成过程中,可以预先或就地与金属配位。通过举例说明,由于优选的金属是铑,优选的旋光配位体是磷配位体,并且由于优选的非对称合成方法是加氢甲酰化,本发明优选的催化剂母体组合物可以包括溶性铑羰基磷配合物母体催化剂、有机溶剂和磷配位体,该组合物可通过形成由上述定义的铑的二羰基乙酰丙酮化物、有机溶剂和旋光磷配位体的溶液来制备。磷在室温很容易置换一个或两个铑-乙酰丙酮配合物母体中的羰基配位体,可通过CO气的释放而观察到。如果需要,可通过加热溶液促进这一置换反应。能使铑二羰基乙酰丙酮配合物母体和铑磷配合物母体溶解的任何合适的有机溶剂都可采用。一般说来,铑配合催化剂母体、有机溶剂和旋光磷配位体的用量,以及在这样催化剂母体组合物中的优选实例,显然地与在本发明非对称加氢甲酰化反应采用的那些用量一致,这些已经在前面讨论过了。可以确信,在不对称加氢甲酰化过程从不同的配位体(例如氢或一氧化碳)开始后,母体催化剂中的乙酰丙酮酸盐配位体就被置换形成旋光铑配位体催化剂。在加氢甲酰化条件下从母体催化剂中释放出来的乙酰丙酮。可以从反应介质中与产物醛一起分离出来,因而不会对非对称加氢甲酰化反应有害。这些优选的铑配合催化性母体组合物的使用,提供了一种控制铑母体金属和加氢甲酰化开始进行的简便经济而有效的方法。旋光催化剂可任意地被载体固定,被载体固定的催化剂的优点在于使催化剂分离容易、以及配位体易于回收。举例的载体有铝、硅胶、离子交换树脂、聚合物载体和类似物。在本发明的不对称方法中。可根据所要求的具体不对称合成来选择可行的操作条件。这些操作条件在本领域中是人所共知的。本发明的所有的不对称合成反应都可按本专业中已知的常规方法进行。本发明非对称合成方法的反应条件,例如可参见Bosnich,B.,Asymmetric Catalysis,Martinus,Nijhoff Publishers 1986和Morrison,James D.,Asymmetric Synthesis Vol.5,Chiral Catalysis Academic Press,Inc.,1985,引用这两篇文献仅供参考。视具体的方法而定,操作温度在约-80℃或更低到约500℃或更高,操作压力在约1psig或更低到约10000psig或更高。实施本发明优选的非对称加氢甲酰化方法的反应条件可以是过去惯用的,其中反应温度为约-25℃或更低至约200℃,反应压力为约1至10000psia尽管优选的不对称合成方法是烯属不饱和化合物特别是烯烃与CO和H2通过加氢甲酰化反应制备旋光醛类的反应过程,可以理解,旋光的金属-配位体配合物还可以用作在其它类型的非对称合成方法中的催化剂,并能取得良好效果。此外,尽管这些其它类型的非对称合成可在它们的常用条件下完成,还应相信,由于旋光金属-配位体配合催化剂的存在,它们可以在比通常选用的温度还低的情况下实施。如前所述,本发明优选的方法在于,在一种旋光金属-磷配位体配合催化剂及任选地游离磷配位体的存在下,特别在一种旋光铑-磷配位体配合催化剂存在下,旋光性通过前手性或手性烯属不饱和化合物与CO和H2进行非对称加氢甲酰化反应过程而制得醛类产物。当然,必须懂得,获得最好的效果和效率的最佳反应条件,取决于在应用本发明时的个人的经验,由确定的实验方法,应能弄清最适宜于具体情况的那些条件,而这些可以通过本发明中本文所说明的优选的各因素和/或简单常规实验为本领域的熟练的技术人员所掌握。例如,在本发明优选的非对称加氢甲酰化反应中,H2、CO和烯属不饱和起始化合物的总气压在约1至10,000psia之间。更好地,在由前手性烯烃合成旋光醛类的非对称加氢甲酰化过程中,实施该方法要求H2,CO和烯属不饱和起始化合物的总压力低于1500psia,较佳的是低于1000psia。反应物的最低总压力不是很关键的,主要受为获得预定的反应速率所用反应物的量的限制。比较特殊地,本发明的非对称加氢甲酰化过程中的CO分压较好是在约1至360psia,最好是在约3至270psia,而H2的分压,较好是在约15至480psia,最好是在约30至300psia。一般说来,气体H2与CO的摩尔比在1∶10到100∶1或更高,比较好的是H2与CO摩尔比为1∶1到1∶10。较高的CO∶H2摩尔比一般促使得到较高的支链/直链比。在上述基础上,本发明优选的非对称加氢甲酰化过程的反应温度范围是-25℃或更低到大约200℃。在所给定的反应过程中,所选用的较好的反应温度与所用的特定的烯烃起始原料和具有旋光活性的金属配位体配合催化剂以及所希望达到的效率有关。较低的反应温度使对映体过剩,支链/直链的比例增大。一般地,对于所有类型的烯烃起始原料进行非对称加氢甲酰化的优选反应温度范围大约是0℃~120℃较好地,α-烯烃能在大约0℃~90℃有效地加氢甲酰化,而活性比通常的直链α-烯烃和内烯烃以及α-烯烃与内烯烃的混合物低的烯烃,其有效的加氢甲酰化反应温度在25℃~120℃之间。实际上,在本发明铑催化的非对称加氢甲酰化方法中,当反应温度高于120℃时没有本质上的优势而不作考虑。制取具有旋光活性的产物要有足够的时间。所用的准确反应时间与很多因素有关如反应的温度、起始原料的性质和比例等等。反应的时间范围通常是半小时到200小时或更长,而优选的是1个小时到大约10个小时。总的来说,本发明的非对称合成过程特别是非对称加氢甲酰化的过程在液态或气态条件下均能进行,可采用间歇式的、连续式的气体或液体循环系统或这两种系统的结合。本发明采用间歇式的循环系统较好地进行操作。本发明的非对称加氢甲酰化采用分批均相催化方法较好。而加氢甲酰化反应是在含游离的磷配位体和任何合适的惯用溶剂中进行的。本发明的非对称合成过程特别是非对称加氢甲酰化反应可在有旋光金属-配位体配合催化剂的有机溶剂中进行。根据所用的催化剂和特定的反应物,合适的有机溶剂包括乙醇、烷烃、链烯烃、炔、醚、醛、酮、酯、酸、酰胺、胺以及芳香族类等等。任何不过分有害影响预定的非对称合成过程的合适溶剂都可采用。这些溶剂包括以前常用于众所周知的金属催化过程的惯用溶剂。增加溶剂的介电常数或极性通常有剩于提高反应速率。当然,根据需要可使用一种或多种不同溶剂的混合物。显然,所采用的溶剂量对本发明并不是关键的,对于一个给定的反应过程,溶剂的量足以使反应介质达到特定的金属浓度就可以了。通常使用的溶剂量占全部反应介质的总重量百分比是5%-95%。如上所述,本发明的非对称合成反应特别是非对称加氢甲酰化反应可在游离配位体存在下进行,游离配位体即未与所用旋光金属-配位体配合催化剂的金属配合的配位体。所用游离配位体最好与金属-配位体配合催化剂的配位体一样,这些配位体在所给的反应中没有必要一样,但如果需要可以不同。本发明的非对称合成特别是非对称加氢甲酰化反应可在任何过量的游离配位体中进行,而游离配位体并不是绝对必要的。因此,对于大多数情况,特别是对于铑催化的加氢甲酰化来说,相应于反应介质中每一摩尔金属(例如铑)的适宜的配位体量是约2-100(必要时可以更高)摩尔。前述所用的配位体的量相当于与金属配合的配位体的量和游离配位体的量的总和。如果需要的话,补充的配位体当然可以随时采用合适的方式加入到不对称加氢甲酰化过程的反应介质中来维持反应介质中的游离配位体的预定浓度。本发明的优点在于该发明的反应过程能在游离的配位体存在的条件下进行,不存在所用配位体很不准确的浓度的临界值,而临界值对于特定的配催化剂是需要的,因为在反应过程中任何游离配位体的量都使催化剂的活性受影响,对于大规模工业化生产来说,有助于操作人员的自由操作。本发明的方法可用于制备取代的和非取代的旋光化合物,并立体选择地形成一个手性中心。由本发明的方法制取的旋光化合物例如包括取代的和非取代的醇类或酚类、胺类、酰胺、醚或环氧化物;酯、羧酸或酐、酮、烯烃、乙炔、卤化物或磺酸盐、醛、腈以及烃类。由本发明的非对称加氢甲酰化方法制得的理想的旋光醛类化合物,举例如下S-2-(对-异丁基苯基)丙醛;S-2-(6-甲氧萘基)丙醛;S-2-(3-苯甲酰苯基)丙醛;S-2-(对-噻吩并苯基)丙醛;S-2-(3-氟-4-苯基)苯丙醛;S-2-[4-(1,3-二氢-1-氧-2H-异氮茚-2-基)苯基]丙醛;S-2-(2-甲基乙醛)-5-苯甲酰基噻吩等等。本发明的方法能制取的旋光化合物(包括下面将描述的旋光化合物的衍生物和上面描述的前手性的和手性的起始原料化合物)包括Kirk-Othmer,Encyclopedia of Chemical Technology,Third Edition,1984和The Merck Index,An Encyclopedia of Chemicals,Drugs,and Bioloegicals,Eleventh Edition,1989中描述的那些可行的化合物,引入相关的部分作参考。本发明的方法能得到具有高对映选择性和区域选择性的旋光产物,例如加氢甲酰化。由本发明的方法得到的对映体过剩量超过50%则较好,超过75%更好,超过90%则最好。同样,由本发明的方法例如加氢甲酰化反应得到的支链/直链的摩尔比以高于5∶1为好,高于10∶1更好,最好是高于25∶1。本发明的方法可以适合于大规模工业生产的很高的化学反应速度进行。所要的旋光化合物如醛可用任何常规的方法回收。适用的分离方法包括溶剂提取、结晶、蒸馏、汽化、擦膜蒸发、降膜蒸发等。如WO88/08835所描述的那样,当旋光产物通过使用捕集剂而形成的时候,它们可以从反应体系中分离出来。由本发明的非对称合成方法制备的旋光产物能进一步反应得到所希望的衍生物。这些可行的衍生反应可按本专业领域中已知的常规操作方法进行。举例的衍生反应有酯化反应、醇氧化成醛的反应、酰胺的N-烷基化、醛到酰胺的加成反应、腈的还原反应、由酯进行的酮的酰化反应以及胺的酰化反应等。对由非对称加氢甲酰化制得的旋光醛来讲,举例的衍生反应有氧化成羧酸的反应、还原为醇的反应、生成α或β不饱和化合物的醛醇缩合反应、生成胺的还原胺化反应、生成亚胺的胺化反应等。本发明不受这些可行的衍生反应的限制。一种优选的衍生反应包括将非对称加氢甲酰化反应制得的旋光性醛氧化成相应的旋光性羧酸。这些氧化反应可按本领域已知的常规方法进行。由该方法制备的许多重要的药用化合物包括(但不限于)S-异丁丙苯酸、S-甲氧萘丙酸、S-酮丙酸、S-噻丙吩、S-氟联苯丙酸、S-吲哚洛芬、S-噻咯芬酸和类似物。包含在本发明范围内的优选的衍生反应,即氧化反应,其反应物/醛中间产物/产物的相互关系如下反应物 醛中间产物 产物P-异丁基苯乙烯 S-2-(P-异丁基苯基) S-异丁丙苯酸丙醛2-乙烯基-6- S-2-(6-甲氧萘 S-甲氧萘丙酸甲氧基萘 基)丙醛3-乙烯基苯基二 S-2-(3-苯甲酰 S-酮丙酸苯甲酮 基苯基)丙醛4-乙烯基苯基-2- S-2-(P-噻吩并 S-噻丙吩噻吩基酮 苯基)丙醛4-乙烯基-2-氟 S-2-(3-氟代- S-氟联苯丙酸代联苯 4-苯基)苯丙醛4-(1,3-二氢 S-2-[4-(1,3-二氢-1- S-吲哚洛芬-1-氧-2H-异 氧-2H-异氮茚-2-基)苯氮茚-2-基)苯乙烯 基]丙酸2-乙烯基-5-苯甲 S-2-(2-甲基乙醛)-5- S-噻洛吩酸酰基噻吩 苯甲酰基噻吩3-乙烯基苯基二 S-2-(3-苯氧基)丙醛 S-苯氧基丙苯醚 酸丙烯基苯 S-2-苯基丁醛 S-布替他酯异丁基-4-乙烯基苯 S-2-(4-异丁基 S-乙基甲丙苯基)丁醛 基苯乙酸苯基乙烯基醚 S-2-苯氧基丙醛 苯氧乙基青霉素氯乙烯 S-2-氯丙醛 S-2-氯丙酸2-乙烯基-6- S-2-(6-甲氧基 S-甲氧萘丙甲氧基萘 萘基)丙醛 醇2-乙烯基-6- S-2-(6-甲氧基 S-甲氧萘丙甲氧基萘 萘基)丙醛 酸钠5-(4-羟基)苯 5-(4-羟基)苯甲酰 Ketorolac甲酰基-3H-吡咯 基-1-甲酰基-2,3 或衍生物-二氢吡咯实施本发明的非对称合成反应的适宜的反应物举例如下AL-醇PH-酚TPH-苯硫酚MER-硫醇AMN-胺AMD-酰胺ET-醚EP-环氧化物ES-酯H-氢CO-一氧化碳HCN-氰化氢HS-氢硅烷W-水GR-格利雅试剂AH-酰基卤UR-尿素OX-草酸盐CN-氨基甲酸酯CNA-氨基甲酸CM-碳酸盐CMA-碳酸CA-羧酸ANH-酸酐KET-酮OLE-烯烃ACE-乙炔HAL-卤化物SUL-磺酸盐ALD-醛NIT-腈HC-烃DZ-重氮化合物BOR-甲硼烷ESE-烯酯甲硅烷基醚由本发明和非对称合成方法制备的适宜的旋光产物举例如下AL-醇PH-酚TPH-苯硫酚MER-硫醇AMN-胺AMD-酰胺ET-醚EP-环氧化物ES-酯H-氢CO-一氧化碳SI-硅烷UR-尿素OX-草酸盐CN-氨基甲酸酯CNA-氨基甲酸CM-碳酸盐CMA-碳酸CA-羧酸ANH-酸酐KET-酮OLE-烯烃ACE-乙炔HAL-卤化物SUL-磺酸盐ALD-醛NIT-腈HC-烃类CYP-环丙烷ABR-烷基硼烷ADL-3-羟基丁醛包含在本发明范围内的可行的非对称合成反应,其反应物与相应的产物举例如下反应物 产物OLE,CO,H ALDOLE,CO,H CAALD KETOLE,ALD KETOLE,HC HCOLE,CO CAOLE,CO,AMN AMDOLE,CO,AL ESKET,H ALEP;H ALOLE,AMN AMNOLE,AL ETAL,CO HCAL ALDOLE,HCN NITOLE,HS SIOLE,CO,W CAOLE OLEGR HCAH HALOLE,H HCOLE,BOR ALOLE,BOR ABROLE,DZ CYPKET,AL ALALD,ESE ADLKET,ESE ADLKET,HS ALEP,CO,H ALDEP,HCN NIT如上所述,本发明的方法可以间歇式或连续式方式进行。如需要的话,未消耗的起始原料可循环使用。该反应可在单一反应区域或多个反应区域以连续式或平行方式进行,还可在一伸长的管式区域或一系列这种区域中以间歇式或连续式进行。所采用的结构材料在反应中应对起始原料是惰性的,且制造的设备应能承受反应的温度和压力。对在反应过程中以间歇式或连续式引入的原料和组份,可在反应过程中采用适宜的各种手段对其引入或调节用量以维持原料的所预定的摩尔比。可通过将一种原料递增加入到其它原料中的方式来完成各步反应。也可通过将各种起始原料同时加入到此旋光金属配位体配合催化剂中的方式使各反应步骤合并进行。当不需要或者不能实现完全转化时,起始原料可从反应物中分离出来,并重新循环回到反应区域中。该反应可在搪瓷的、不锈钢或类似的反应装置中进行。在反应区域中可配置一个或多个内热交换器或外热交换器,以便控制温度的大幅度波动或阻止任何反应温度的骤变。最后,本发明方法的旋光产物具有公知的且在现有技术中已被证实的广泛用途,例如,它用作药物、调料、香料、农药等时尤其有效。在治疗方面应用的例证包括如,非甾体抗炎药、ACE抑制剂、β-阻断剂、镇痛剂、支气管扩张药、解痉药、抗组胺剂、抗菌素、抗肿瘤剂等等。本文中所用的下列述语的含义指手性-具有一个或多个不对称中心的分子。非手性-不包括或至少不含有一个不对称中心的分子或过程。前手性-在特定过程中有可能转化为手性产物的分子。手性中心-不对称位置分子的任意结构特征。消旋-手性化合物的两种对映体的50/50混合物。立体异构体-具有等同的化学组成,但其原子或基团在空间排列不同的化合物。对映体-为相互不能重叠的镜象的立体异构体。立体选择-便于其他物质产生特定立体异构体的过程。对映体过量(ee)-存在于产物中的两种对映体的相对量的度量。ee可按公式[主要对映体量-次要对映体量]/[主要对映体量+次要对映体量]计算。旋光性-对存在于给定产物中立体异构体的相对量的间接度量。手性化合物具有使平面偏振光旋转的能力。当一种对映体的存在量高过其他种时,该混合物便是旋光的。旋光-由于一种立体异构体多于另一种立体异构体而使平面偏振光旋转的立体异构体混合物。旋光纯-使平面偏振光旋转的单一立体异构体。区域异构体-具有相同分子式但原子连接不同的化合物。区域选择-促使一种特定区域异构体的产生优于其他所有区域异构体的过程。iso BHA Chloriditc-1,1′-联苯基-3,3′-二叔丁基-5,5′-二甲氧-2,2′-二基氯代亚磷酸酯。BHA dichloridite-2-叔丁基-4-甲氧苯基二氯亚磷酸酯。iso BHT chloridite-1,1′-联苯基-3,3′,5,5′-四叔丁基-2,2′-二基氯代亚磷酸酯。biphenol chloridite-1,1′-联苯-2,2′-二基氯代亚磷酸酯。对于本发明来说,化学元素按照元素周期表(CAS Version,Handbook of Chemistry and Physics,67th Ed.,1986-87)内部包括的表示。此外,对于本发明,“烃”一词的含义包括具有至少一个氢和一个碳原子的所有容许的化合物。广义地讲,该容许的烃类包括无环和环状的支链和无支链的、碳环和杂环的、芳族和非芳族的有机化合物,该烃可以是取代的或未取代的。本文所用的“取代”一词的含义包括有机化合物所有容许的取代基。广义地讲,该容许的取代基包括有机化合物的无环和环状的、支链和无支链的、碳环和杂环的、芳族和非芳族的取代基。取代基的实例包括,例如上文所述的那些取代基。对适当的有机化合物来说,该容许的取代基可以是一个或多个,相同或不同的取代基。对本发明来说,杂原子,如氮可以具有氢取代基和/或任意如本文所述的有机化合物的容许的取代基以满足该杂原子的化合价。本发明决不意味着以任何方式受到有机化合物的容许的取代基的限制。所提供的某些下面的实施例用来进一步说明本发明的方法。实施例1制备(iso BHA-P)2-2R,4R-戊二醇在氮气氛下将iso BHA chloridite(10.48g,0.0248mol)于甲苯(20ml)中的溶液装入500ml Schlenk烧瓶。将该烧瓶在冰水浴中冷却。制备2R,4R-戊二醇(1.29g,0.124mmol)于甲苯(100ml)和三乙胺(4.2ml,0.0301mol)中的另一溶液,并通过套管经约15分钟将其转移至含有iso BHA Chloriditc溶液的烧瓶中。添加完毕时,移走冰水浴并将该混合物回流1.5小时。冷却后,将该溶液过滤以去除固体盐酸三乙胺。在真空中去除甲苯溶剂并将残留物溶于约15ml乙腈中。于室温搅拌约30分钟后,形成白色结晶。过滤该混合物并用数份乙腈洗涤该白色固体再在真空下干燥,得到(iso BHA-P)2-2R,4R-戊二醇(6.8g,收率63%),其化学式为 实施例2制备R-联萘酚-BHA有机亚磷酸二酯在氮气氛下将BHA dichloridite(4.9g,0.0175mol)于甲苯(20ml)中的溶液装入250ml Schlenk烧瓶。在冰水浴中冷却该烧瓶。制备R-1,1′-联-2-萘酚(5g,0.0175mol)于甲苯(160ml)和三乙胺(12ml,0.0863mol)中的另一溶液并通过套管经约15分钟将其移至含有BHA dichloridite溶液的烧瓶。添加完毕时,移走冰浴并将该混合物回流1小时。向该反应混合物加入水(40ml)以溶解盐酸三乙胺。将有机层与水层分离并用40ml水再洗涤一次。分离该有机层,在真空中去除甲苯溶剂并将残留物溶于约15ml乙腈中。在室温搅拌约30分钟后,形成白色晶体。过滤该混合物并用数份乙腈洗涤白色固体再于真空下干燥,得到R-联萘酚-BHA-有机亚磷酸二酯(4.2g,收率49%),化学式为 实施例3制备(iso BHT-P)2-2R,4R-戊二醇在氮气氛下将iso BHT Chloridite(17.3g,0.0390mol)于甲苯(100ml)中的溶液装入500ml Schlenk烧瓶。在冰水浴中冷却该烧瓶。制备2R,4R-戊二醇(1.9g,0.0183ml)于甲苯(150ml)和三乙胺(6ml,0.0410mol)中的另一溶液并经过套管经约15分钟将其移入含有iso BHT Chloridite溶液的烧瓶。添加完毕时,移走冰水浴并将该混合物回流1.5小时。冷却后,过滤该溶液以去除固体盐酸三乙胺。在真空中去除甲苯溶剂并将残留物溶于约15ml乙腈中。于室温搅拌约30分钟后,形成白色晶体,过滤该混合物并用数份乙腈洗涤该白色固体,再于真空下干燥,得到(iso BHA-P)2-2R,4R-戊二醇(8g,收率48%),化学式为 实施例4制备(iso BHA-P)2-(-)-2,3-O-异亚丙基-d-苏糖醇在氮气氛下将iso BHA Chloridite(17.2g,0.0407mol)于甲苯(20ml)中的溶液装入500ml Schlenk烧瓶。在冰水浴中冷却该烧瓶。制备(-)-2,3-O-异亚丙基-d-苏糖醇(1g,0.0124mol)于甲苯(200ml)和三乙胺(2ml,0.0150mol)中的另一溶液并通过套管经约15分钟将其移至含有iso BHA Chlotidite溶液的烧瓶。添加完毕时,移走冰水浴并将该混合物回流2小时。冷却后,过滤该溶液以去除固体盐酸三乙胺。在真空中去除甲苯溶剂并将残留物溶于约15ml乙腈中,于室温搅拌约30分钟后,形成白色晶体。过滤该混合物并用数份乙腈洗涤该白色固体,再于真空下干燥,得到(iso BHA-P)2-(-)-2,3-O-异亚丙基-d-苏糖醇(8.1g,收率70%),化学式为 实施例5制备双(二苯基膦基)-2R,4R-戊二醇在氮气氛下将氯二苯膦(3.5ml,0.0195mol)于甲苯(30ml)中的溶液装入500ml Schlenk烧瓶。在冰水浴中冷却该烧瓶。制备2R,4R-戊二醇(1g,0.0096mol)于甲苯(100ml)和三乙胺(3ml,0.0225mol)中的另一溶液并通过套管经约15分钟将其移至含氯二苯膦溶液的烧瓶中。添加完毕时,移走冰水浴并将该混合物回流2小时,冷却后,过滤该溶液去除固体盐酸三乙胺。于真空中去除甲苯溶剂并将残留物溶于约15ml乙腈中。于室温搅拌约30分钟后,形成白色晶体。过滤该混合物并用数份乙腈洗涤白色固体,再于真空下干燥,得到双(二苯膦基)-2R,4R-戊二醇(2.5g,收率56%),化学式为 实施例6制备三(S-1,1′-联-2-萘酚)双亚膦酸酯在氮气氛下将三氯化磷(0.8g,0.0583mol)于甲苯(50ml)中的溶液装入500ml Schlenk烧瓶。在冰水浴中冷却该烧瓶。制备S-1,1′-联-2-萘酚(5g,0.0175mol)于甲苯(200ml)和三乙胺(4ml,0.0301mol)中的另一溶液并通过套管经约15分钟将其移至含三氯化磷溶液的烧瓶中。添加完毕时,移走冰水浴并将该混合物回流2小时,冷却后,过滤该溶液以去除固体盐酸三乙胺。于真空中去除甲苯溶剂并将残留物溶于约15ml乙腈中。于室温下搅拌约30分钟后,形成白色晶体,过滤该混合物并用数份乙腈洗涤该白色固体,再在真空下干燥,得到三(S-1,1′-联-2-萘酚)双亚磷酸酯(14.5g,收率54%),化学式为 实施例7制备(N,N′-二苯基亚乙基二胺-P)2-2S,4S-戊二醇在氮气氛下将N,N′-二苯基亚乙基二氨基氯亚磷酸酯(1.99g,0.0076mol)于甲苯(20ml)中的溶液装入500ml Schlenk烧瓶。在冰水浴中冷却该烧瓶。制备2S,4S-戊二醇(0.375g,0.0036mol)于甲苯(100ml)和三乙胺(1ml,0.0072mol)中的另一溶液并通过套管经约15分钟将其移至含N,N′-二苯基亚乙基二氨基氯亚磷酸酯溶液的烧瓶。添加完毕时,移走冰水浴并将混合物回流1.5小时。冷却后,过滤该溶液以去除固体盐酸三乙胺。于真空中去除甲苯溶剂并将残留物溶于约15ml乙腈中。于室温搅拌约30分钟后,形成白色晶体。过滤该混合物并用数份乙腈洗涤该白色固体,再于真空下干燥,得到(N,N′-二苯基亚乙基二胺-P)2-2S,4S-戊二醇(2.0g,收率95%),化学式为 实施例8制备(联酚-P)2-2R,4R-戊二醇在氮气氛下将biphenol chloridite(4.9g,0.0196mol)于甲苯(20ml)中的溶液装入500ml Schlenk烧瓶。在冰水浴中冷却该烧瓶。制备2R,4R-戊二醇(1.02g,0.0098mol)于甲苯(100ml)和三乙胺(3ml,0.0216mol)中的另一溶液并通过套管经约15分钟将其移至含biphenol chloridite溶液的烧瓶。添加完毕时,移走冰水浴并将该混合物回流1.5小时。冷却后,过滤该溶液以去除固体盐酸三乙胺,于真空中去除甲苯溶剂并将残留物溶于约15ml乙腈中。于室温搅拌约30分钟后,形成白色晶体。过滤该混合物并用数份乙腈洗涤该白色固体,再于真空中干燥,得到(联酚-P)2-2R,4R-戊二醇(2.12g,收率40%),化学式为 实施例9制备iso BHA-P-S-1,1′-联-2-萘酚有机亚磷酸二酯在氮气氛下将iso BHA Chloridite(4.9g,0.0116mol)于甲苯(20ml)中的溶液装入500ml Schlenk烧瓶。在冰水浴中冷却该烧瓶。制备S-1,1′-联-2-萘酚(3.32g,0.116mol)于甲苯(100ml)和三乙胺(1.65ml,0.0117mol)中的另一溶液并通过套管经约15分钟将其移至含iso BHA Chloridite溶液的烧瓶。添加完毕时,移走冰水浴并将该混合物回流1.5小时。冷却后,过滤该溶液以去除固体盐酸三乙胺。于真空中去除甲苯溶剂并将残留物溶于约15ml乙腈。于室温搅拌30分钟后,形成白色晶体,过滤该混合物并用数份乙腈洗涤该白色固体,再在真空下干燥,得到iso BHA-P-S-1,1′-联-2-萘酚有机亚磷酸二酯(3.3g,42.4%收率),化学式为 实施例10制备S-1,1′-联-2-萘酚-P-2,6-二叔丁基-4-甲基酚有机亚磷酸二酯在氮气氛下将S-1,1′-联-2-萘酚chloridite(2.09g,0.0060mol)于甲苯(20ml)中的溶液装入500ml Schlenk烧瓶。在冰水浴中冷却该烧瓶。制备2,6-二叔丁基-4-甲基酚(1.54g,0.006mol)于甲苯(100ml)和三乙胺(1ml,0.0072mol)中的另一溶液并通过套管经约15分钟将其移至含iso BHA chloridite溶液的烧瓶。添加完毕时,移走冰水浴并将该混合物回流1.5小时。冷却后,过滤该溶液以去除固体三乙胺。于真空中去除甲苯溶剂并将残留物溶于约15ml乙腈。于室温搅拌约30分钟后,形成白色结晶。过滤该混合物并用数份乙腈洗涤该白色固体,再于真空下干燥,得到S-1,1′-联-2-萘酚-P-2,6-二叔丁基-4-甲基酚有机亚磷酸二酯(1.67g,收率52%),化学式为 实施例11-22用(iso BHA-P)2-2R,4R-戊二醇/铑催化剂对苯乙烯的不对称加氢甲酰化制备催化剂溶液,其组成为0.0122g二羰基乙酰丙酮铑(250ppm铑),0.1702g实施例1中制备的(iso BHA-P)2-2R,4R-戊二醇(4∶1配位体与铑之比)和19.8g甲苯。将15ml此溶液装入100ml反应器并于氮气氛下加热至70℃。向该反应器加入1.5ml苯乙烯并用1∶1合成气将反应器加压至130psi。当合成气体消耗时通过监测压降测定反应速率。反应速率约为0.26g-mol/l/h。当因苯乙烯原料的消耗而使该速率减缓时,在氮气氛下将反应混合物自反应器中排出。将一部分反应混合物用气相色谱分析测定产物组成。测得异构体比率为12.4∶1(2-苯基丙醛∶苯基丙醛)。将3ml该溶液在50ml丙酮中稀释并用0.3g高锰酸钾和0.32g硫酸镁处理以使该产物醛氧化成相应的酸。将该混合物于室温搅拌30分钟,然后在减压下去除溶剂。将残留物用50ml热水萃取三次。然后合并该三份水溶液,过滤,再用50ml氯仿洗涤。然后用HCl将该水液层酸化至pH2再用50ml氯仿萃取。于真空下去除氯仿并将所得残留物溶于0.5ml甲苯。将此溶液在手性6-环糊精柱(该柱可分离所得2-苯基丙酸的两种对映体)上用气相色谱法分析。该分析表明ee(对映体过量)为60%的S与R对映体比率为80∶20。下面表A综合记录了苯乙烯加氢甲酰化采用这一配位体的其他实验(均以250ppm铑浓度进行实验)。 实施例23用R-联萘酚-BHA有机亚磷酸二酯/铑催化剂对苯乙烯的不对称加氢甲酰化制备催化剂溶液,组成为0.0122g二羰基乙酰丙酮铑(250ppm铑)。0.0480g实施例2中制备的R-联萘酚-BHA有机亚磷酸二酯(2∶1的配位体与铑之比)和19.9甲苯。将15ml该溶液装入100ml反应器并在氮气氛下加热至45℃。向反应器加入1.5ml苯乙烯并用1∶1合成气将反应器加压至130psi。通过监测合成气消耗时的压降测定反应速率。反应速率约为0.5g-mol/l/h。当该速率因苯乙烯原料消耗而减缓时,在氮气氛下将反应混合物排出反应器。将一部分反应混合物通过气相色谱分析以测定产物组成。测得异构体比例为6∶1(2-苯基丙醛∶苯基丙醛)。将3ml该溶液于50ml丙酮中稀释并用0.3g高锰酸钾和0.32g硫酸镁处理以使产物醛氧化成其相应的酸。将反应混合物于室温搅拌30分钟,然后在减压下去除溶剂。将该残留物用50ml热水萃取3次。然后合并该三份水液,过滤,再用50ml氯仿洗涤。用HCl将水液层酸化至pH2再用50ml氯仿萃取。在真空中去除氯仿并将所得残留物溶于0.5ml甲苯。在手性b-环糊精柱(该柱可分离所得2-苯基丙酸的两种对映体)上用气相色谱法分析该溶液。分析表明ee(对映体过量)为10%的S和R的对映体之比为55∶45。实施例24-28用(iso BHA-P)2-2R,4R-戊二醇/铑催化剂对苯乙烯的不对称加氢甲酰化制备催化剂溶液,组成为0.0122g二羰基乙酰丙酮铑(250ppm铑),0.1907g实施例3制备的(iso BHT-P)2-2R,4R-戊二醇(配位体与铑之比4∶1)和19.8g甲苯。将15ml该溶液装入100ml反应器并在氮气氛下加热至70℃。向该反应器加入1.5ml苯乙烯并用1∶1合成气将反应器加压至130psi。通过监测合成气消耗时的压降测定反应的速率。反应速率约为0.44g-mol/l/h。当因苯乙烯原料的消耗而使速率减缓时,在氮气氛下将反应混合物自该反应器中排出。用气相色谱法分析一部分反应混合物以测定产物组成。测得异构体比(2-苯基丙醛∶苯基丙醛)为21.2∶1。将3ml该溶液于50ml丙酮中稀释并用0.3g高锰酸钾和0.32g硫酸镁处理以使产物醛氧化成其相应的酸。于室温搅拌该混合物30分钟,然后在减压下去除溶剂。将残留物用50ml热水萃取3次。然后合并该三份水液,过滤,再用50ml氯仿洗涤。然后用HCl将该水液层酸化至pH2再用50ml氯仿萃取。真空中去除氯仿并将所得残留物溶于0.5ml甲苯。用气相色谱法在手性b-环糊精柱(该柱可分离所得2-苯基丙酸的两种对映体)上分析该溶液。分析表明ee(对映体过量)为44%的S和R对映体之比为62∶38。下面的表B综合记录了于苯乙烯加氢甲酰化中采用这一配位体的其他实验(所有实验的铑浓度均为250ppm)。 实施例29用(iso BHA-P)2-2R,4R-戊二醇/铑催化剂对降冰片烯的不对称加氢甲酰化制备催化剂溶液,组成为0.0122g二羰基乙酰丙酮铑(250ppm铑),0.1702g实施例1制备的(iso BHA-P)2-2R,4R-戊二醇(配位体与铑之比4∶1),2.25g降冰片烯和17.6g丙酮。将15ml此溶液装入100ml反应器并于氮气氛下加热至50℃。用1∶1合成气将反应器加压至130psi。通过监测合成气消耗时的压降测定该反应的速率。反应速率约为2.55g-mol/l/h。当该速率因降冰片烯原料的减少而减缓时,在氮气氛下将反应混合物自反应器中排出。用气相色谱法分析一部分反应混合物以测定产物组成。仅测得一种单一区域异构体,外-2-降冰片醛。将第二部分溶液在chiraldex B-TA柱上分析以测定对映选择性。测得外-1R,2R,4S-降冰片醛异构体为主要产物的对映体配比为80∶20,ee为60%。实施例30用(iso BHA-P)2-2R,4R-戊二醇/铑催化剂对乙烯基乙酸酯的不对称加氢甲酰化制备催化剂溶液,其组分成为0.0122g二羰基乙酰丙酮铑(250ppm铑),0.1702g实施例1制备的(iso BHA-P)2-2R,4R-戊二醇(配位体与铑之比4∶1)和17.6g甲苯。将15ml此溶液装入100ml反应器并在氮气氛下加热至50℃。向反应器加入1.5ml乙烯基乙酸酯。用1∶1合成气将反应器加压至130psi。通过监测合成气消耗时的压降测定该反应的速率。反应速率约为0.12g-mol/l/h。当该速率因降冰片烯原料的消耗而减缓时,在氮气氛下将反应混合物自反应器中排出。用气相色谱法分析一部分反应混合物以测定产物组成,仅获得一种区域异构体,a-乙酸基丙醛。在Cyclodex B柱上分析第二部分该溶液以测定对映选择性。测得S立体异构体为主要产物的对映体配比为75∶25,ee为50%。实施例31用(iso BHA-P)2-(-)-2,3-O-异亚丙基-d-苏糖醇/铑催化剂对苯乙烯的不对称加氢甲酰化制备催化剂溶液,组成为0.0122g二羰基乙酰丙酮铑(250ppm铑),0.1815g实施例4制备的(iso BHA-P)2-(-)-2,3-O-异亚丙基-d-苏糖醇(配位体与铑之比4∶1)和19.8g甲苯。将15ml此溶液装入100ml反应器并在氮气氛下加热至70℃。向反应器加入1.5ml苯乙烯并用1∶1合成气将反应器加压至130psi。通过监测合成气消耗时的压降测定该反应速率。反应速率约为0.40g-mol/l/h。当该速率因苯乙烯原料的消耗减缓时,在氮气氛下将反应混合物自反应器中排出。用气相色谱法分析一部分反应混合物以测定产物组成,测得异构体比为8.8∶1(2-苯基丙醛∶苯基丙醛)。将3ml该溶液于50ml丙酮中稀释再用0.3g高锰酸钾和0.32g磷酸镁处理以使该产物醛氧化成其相应的酸。于室温搅拌该混合物30分钟,然后在减压下去除溶剂。将残留物用50ml热水萃取3次,然后合并三份水液,过滤并用50ml氯仿洗涤。然后将水液层用HCl酸化至pH2再用50ml氯仿萃取。于真空中去除氯仿并将所得残留物溶于0.5ml甲苯。用气相色谱法在手性b-环糊精柱(该柱可分离所得2-苯基丙酸的两种对映体)上分析该溶液。分析表明ee(对映体过量)为2%的S和R的对映体之比为52∶48。实施例32用双(二苯膦基)-2R,4R-戊二醇/铑催化剂对苯乙烯的不对称加氢甲酰化制备催化剂溶液,组成为0.0122g二羰基乙酰丙酮铑(250ppm铑),0.0917g实施例5制备的双(二苯膦基)-2R,4R-戊二醇(配位体与铑之比4∶1)和19.8g甲苯。将15ml该溶液装入100ml反应器并于氮气氛下加热至70℃。向反应器加入1.5ml苯乙烯并用1∶1合成气将反应器加压至130psi。通过监测合成气消耗时的压降测定该反应的速率。反应速率约为0.08g-mol/l/h。当该速率因苯乙烯原料的消耗而减缓时,在氮气氛氛下将反应混合物从反应器中排出。用气相色谱法分析一部分反应混合物以测定产物的组成。测得异构体比为3.38∶1(2-苯基丙醛∶苯基丙醛)。将3ml该溶液于50丙酮中稀释并用0.3g高锰酸钾和0.32g硫酸镁处理以使产物醛氧化成其相应的酸。将该混合物于室温搅拌30分钟,然后在减压下去除溶剂。将残留物用50ml热水萃取3次。然后合并3份水液,过滤并用50ml氯仿洗涤。然后用HCl将该水液层酸化至pH2再用50ml氯仿萃取于真空中去除氯仿并将所得残留物溶于0.5ml甲苯。用气相色谱法在手性b-环糊精柱(该柱可分离所得2-苯基丙酸的两种对映体)上分析该溶液。分析表明,ee(对映体过量)为5%的S和R的对映体之比为52.5∶47.5。实施例33用三(S-1,1′-联-2-萘酚)双亚磷酸酯/铑催化剂对苯乙烯的不对称加氢甲酰化制备催化剂溶液,组成为0.0122g二羰基乙酰丙酮铑(250ppm铑),0.1775g实施例6制备的三(S-1,1′-联-2-萘酚)双亚磷酸酯(配位体与铑之比4∶1)和19.8g甲苯。将15ml此溶液装入100ml反应器并于氮气氛下加热至70℃。向反应器加入1.5ml苯乙烯并用1∶1合成气将反应器加压至130psi。通过监测合成气消耗时的压降测定该反应的速率。反应速率约为0.16g-mol/l/h。当该速率因苯乙烯原料的消耗而减缓时,在氮气氛下将反应混合物从反应器中排出。用气相色谱法分析一部分反应混合物以测定产物组成。测得异构体比为2.95∶1(2-苯基丙醛∶苯基丙醛)。将3ml该溶液于50ml丙酮中稀释并用0.3g高锰酸钾和0.32g磷酸镁处理以使产物醛氧化成其相应的酸。于室温下搅拌该混合物30分钟,然后在减压下去除溶剂。将残留物用50ml热水萃取3次。然后将三份水溶液合并,过滤,再用50ml氯仿洗涤。然后用HCl将水液层酸化至pH2再用50ml氯仿萃取。于真空中去除氯仿并将所得残留物溶于0.5ml甲苯。用气相色谱法在手性b-环糊精柱(该柱可分离所得2-苯基丙酸的两种对映体)上分析该溶液。分析表明,ee(对映体过量)为25%的S和R对映体之比为62.5∶37.5。实施例34用(N,N′-二苯基亚乙基二胺-P)2-2S,4S-戊二醇/铑催化剂对苯乙烯的不对称加氢甲酰化制备催化剂溶液,组成为0.0127g二羰基乙酰丙酮铑(250ppm铑),0.0370g实施例7制备的(N,N′-二苯基亚乙基二胺-p)2-2S,4S-戊二醇(配位体与铑之比1∶1)和19.8g甲苯。将15ml此溶液装入100ml反应器并在氮气氛下加热至70℃。向反应器加入1.5ml苯乙烯并用1∶1合成气将反应器加压至130psi。通过监测合成气消耗时的压降测定该反应的速率。反应速率约为0.81g-mol/l/h。当该速率因苯乙烯原料的消耗而减缓时,在氮气氛下将反应混合物从反应器中排出。用气相色谱法分析一部分反应混合物以测定产物的组成。测得异构体比为7.25∶1(2-苯基丙醛∶苯基丙醛)。在Chiraldex B-TA气相色谱柱上分析第二部分反应混合物以测定立体选择性。测得R-2-苯基丙醛为主要产物的异构体比为53∶47,ee为6%。实施例35用(联酚-P)2-2S,4S-戊二醇/铑催化剂对苯乙烯的不对称加氢甲酰化制备催化剂溶液,组成为0.0125g二羰基乙酰丙酮铑(250ppm铑),0.0311g实施例8制备的(联酚-P)2-2S,4S-戊二醇(配位体与铑之比1.2∶1)和19.9g丙酮。将15ml此溶液装入100ml反应器并在氮气氛下加热至70℃。向反应器加入1.5ml苯乙烯并用1∶1合成气将反应器加压至130psi,通过监测合成气消耗时的压降测定该反应的速率。反应速率约为0.7g-mol/l/h。当该速率因苯乙烯原料的消耗而减缓时,在氮气氛下将反应混合物从反应器中排出。用气相色谱法分析一部分反应混合物以测定产物的组成。测得异构体比为4.6∶1(2-苯基丙醛∶苯基丙醛)。在Chiraldex B-TA气相色谱柱上分析第二部分反应混合物以测定立体选择性。测得R-2-苯基丙醛为主要产物的异构体比为57∶43,ee为14%。实施例36用(iso BHA-P)2-2R,4R-戊二醇/铑催化剂对1-己烯的不对称加氢甲酰化制备催化剂溶液,组成为0.0184g二羰基乙酰丙酮铑(250ppm铑),0.2556g实施例1制备的(iso BHA-P)2-2R,4R-戊二醇(配位体与铑之比4∶1),5g 1-己烯和24.7g丙酮。将此溶液装入100ml反应器,该反应器用1∶1合成气加压至600psi。通过监测合成气消耗时的压降测定反应的速率。反应速率约为0.15g-mol/l/h。当该速率因原料的消耗而减缓时,在氮气氛下将反应混合物从反应器中排出。用气相色谱法分析一部分反应混合物以测定产物组成。测得2-甲基己醛-正庚醛的异构体比为2∶1。在Chiraldex B-TA气相色谱柱上分析第二份溶液以测定对映选择性。测得S-2-甲基己醛异构体为主要产物的对映体配比为60∶40,ee为20%。实施例37用(iso BHA-P)2-2R,4R-戊二醇/铑催化剂对α-甲基苯乙烯的不对称加氢甲酰化制备催化剂溶液,组成为0.0297g二羰基乙酰丙酮铑(250ppm铑),0.4074g实施例1制备的(iso BHA-P)2-2R,4R-戊二醇(配位体与铑之比4∶1),15gα-甲基苯乙烯和14.6g丙酮。将该溶液装入100ml反应器并在氮气氛下加热至50℃。用1∶1合成气将该反应器加压至600psi。通过监测合成气消耗时的压降测定该反应的速率。反应速率约为0.15g-mol/l/h。在氮气氛下将反应混合物从反应器中排出。用气相色谱法分析一部分反应混合物以测定产物组成。仅测得一种单一区域异构体,3-苯基丁醛。在Chiraldex B-TA气相色谱柱上分析第二部分该溶液以测定对映选择性。测得S-立体异构体为主要产物的对映体配比为63∶37,ee为26%。实施例38用(iso BHA-P)2-2R,4R-戊二醇/钌催化剂对苯乙烯的不对称加氢甲酰化制备催化剂溶液,组成为0.0596g钌(Ⅲ)(乙酰丙酮)3(500ppm钌),0.2554g实施例1制备的(iso BHA-P)2-2R,4R-戊二醇(配位体与钌之比2∶1),14.5g丙酮和15.2g苯乙烯。将这一溶液装入100ml反应器并在氮气氛下加热至70℃。用1∶1合成气将反应器加压至500psi。通过监测合成气消耗时的压降测定反应的速率。反应速率约为0.25g-mol/l/h。当该速率因苯乙烯原料的消耗而减缓时,在氮气氛下将反应混合物从反应器中排出。用气相色谱法分析一部分反应混合物以测定产物组成。测得异构体比为17∶1(2-苯基丙醛∶苯基丙醛)。将3ml此溶液于50ml丙酮中稀释并用0.3g高锰酸钾和0.32g硫酸镁处理以使产物醛氧化成其相应的酸。于室温搅拌该混合物30分钟,然后在减压下去除溶剂。将残留物用50ml热水萃取3次。然后合并三份水液,过滤并用50ml氯仿洗涤。然后用HCl酸化该水液层至pH2而后再用50ml氯仿萃取。于真空中去除氯仿并将所得残留物溶于0.5ml甲苯。用气相色谱法在手性b-环糊精柱(该柱可分离所得2-苯基丙酸的两种对映体)上分析这一溶液。分析表明,ee(对映体过量)为54%的S和R对映体之比为77∶23。实施例39用(iso BHA-P)2-2R,4R-戊二醇/铑催化剂对对异丁基苯乙烯的不对称加氢甲酰化制备催化剂溶液,组成为0.1097g二羰基乙酰丙酮铑(1500ppm铑),0.7654g实施例1制备的(iso BHA-P)2-2R,4R-戊二醇(配位体与铑之比4∶1),5g对异丁基苯乙烯和24.5g丙酮。将此溶液装入100ml反应器并用氢气(67psi)和CO气充压至200psi。通过监测合成气消耗时的压降测定反应的速率。反应速率约为0.1g-mol/l/h。当该速率因苯乙烯原料的消耗而减缓时,在氮气氛下将反应混合物从反应器中排出。用气相色谱法分析一部分反应混合物以测定产物组成。测得异构体比为66∶1(2-(4-异丁基)-苯基丙醛∶3-(4-异丁基)-苯基丙醛)。将3ml此溶液于50ml丙酮中稀释并用0.3g高锰酸钾和0.32g硫酸镁处理以使产物醛氧化成其相应的酸。将反应混合物于室温搅拌30分钟,然后在减压下去除溶剂。将残留物用50ml热水萃取3次。然后合并3份水相,过滤并用50ml氯仿洗涤。然后用HCl将水液层酸化至pH2而后用50ml氯仿萃取。于真空下去除氯仿并将所得残留物溶于0.5ml甲苯。用气相色谱法在手性b-环糊精柱(该柱可分离所得2-苯基丙酸的两种对映体)上分析该溶液。分析表明,ee(对映体过量)为82%的S和R对映体的比率为91∶9。实施例40用(iso BHA-P)2-2R,4R-戊二醇/铑催化剂对甲氧基乙烯基萘的不对称加氢甲酰化制备催化剂溶液,组成为0.0366g二羰基乙酰丙酮铑(500ppm铑),0.5103g实施例1制备的(iso BHA-P)2-2R,4R-戊二醇(配位体与铑之比4∶1),5g甲氧基乙烯基萘和24.5g丙酮。将此溶液装入100ml反应器并用氢气(40psi)和CO充压至200psi。通过监测合成气消耗时的压降测定该反应的速率。反应速率约为0.1g-mol/l/h。当该速率因苯乙烯原料的消耗而减缓时,在氮气氛下将反应混合物从反应器中排出。用气相色谱法分析一部分反应混合物以测定产物组成,测得异构体比为80∶1(2-(6-甲氧基)萘丙醛∶3-(6-甲氧基)萘丙醛)。将3ml此溶液于50ml丙酮中稀释并用0.3g高锰酸钾和0.32g硫酸镁处理以使产物醛氧化成其相应的酸。于室温搅拌该混合物30分钟,然后在减压下去除溶剂。用50ml热水萃取该残留物3次。然后合并该三份水相,过滤并用50ml氯仿洗涤。用HCl将该水液层酸化至pH2然后用50ml氯仿萃取。于真空中去除氯仿并将所得残留物溶于0.5ml甲苯。用气相色谱法在手性b-环糊精柱(该柱可分离所得二苯基丙酸的两种对映体)上分析这一溶液。分离表明,ee(对映体过量)为85%的S和R对映体之比为92.5∶7.5。实施例41用(iso BHA-P)2-2R,4R-戊二醇/铑催化剂对乙酰苯的不对称氢化硅烷化在氮气氛下将双(二环[2.2.1]庚-2,5-二烯)铑(Ⅰ)的高氯酸盐(0.020g)和0.200g实施例1制备的(iso BHA-P)2-2R,4R-戊二醇(配位体与铑之比4.8∶1)装入50ml Schlenk烧瓶。加入四氢呋喃(THF)(5.0ml)以溶解催化剂。通过注射管向烧瓶加入0.58ml乙酰苯和0.93ml二苯硅烷。于氮气氛下搅拌该溶液18小时。将该溶液用10ml 10%盐酸处理并用10ml乙醚萃取2次。在Chiraldex B-PH柱(该柱可分离所得仲苯乙醇的两种对映体)上用气相色谱法分析此溶液。分析表明,ee(对映体过量)为60%的S和R对映体之比为80∶20。实施例42用(iso BHA-P)2-2R,4R-戊二醇/镍催化剂对苯乙烯的不对称氢氰化在氮气氛下将双(1,5-环辛二烯)镍(O)(0.025g)和0.146g实施例1制备的(iso BHA-P)2-2R,4R-戊二醇(配位体与镍之比2∶1)装入50ml Schlenk烧瓶。加入脱氧THF(10ml),并搅拌该溶液30分钟。通过注射管向该烧瓶加入2.0ml苯乙烯和2.00ml丙酮合氰化氢。于25℃搅拌该溶液24小时。用气相色谱法分析一部分此溶液以测定产物组成。测得异构体比为2∶1(α-甲苄基氰化物∶苯丙腈)。用气相色谱法在Chiraldex G-TA柱(该柱可分离所得α-甲苄基氰化物的两种对映体)分析第二部分该溶液。该分析仅测得一种单一区域异构体2-降冰片烷腈。该分析表明,ee(对映体过量)为64%的对映体之比为82∶18。实施例43用(iso BHA-P)2-2R,4R-戊二醇/镍催化剂对降冰片烯的不对称氢氰化在氮气氛下将双(1,5-环辛二烯)镍(O)(0.021g)和0.046g实施例1制备的(iso BHA-P)2-2R,4R-戊二醇(配位体与镍之比1∶1)装入50ml Schlenk烧瓶。加入脱氧THF(5.0ml),并将该溶液在氮气氛下搅拌30分钟。通过注射管向该烧瓶加入0.500g降冰片烯和1.00ml丙酮合氰化氢。在氮气氛下将该溶液回流5小时。用气相色谱法在Chiralder B-PH柱(该柱可分离所得2-降冰片烷腈的两种对映体)上分析该反应混合物。该分析仅测得单一区域异构体2-降冰片烷腈。这一分析表明,ee(对映体过量)为50%的对映体之比为75∶25。实施例44用三(S-1,1′-联-2-萘酚)双亚磷酸酯镍催化剂对苯乙烯的不对称氢氰化在氮气氛下将双(1,5-环辛二烯)镍(O)(0.030g)和0.173g实施例6制备的三(S-1,1′-联-2-萘酚)双亚磷酸酯(配位体与镍之比2∶1)装入50ml Schlenk烧瓶。加入脱氧THF(10ml),搅拌该溶液30分钟。通过注射管向该烧瓶加入2.0ml苯乙烯和2.00ml丙酮合氰化氢。于25℃搅拌该溶液24小时。用气相色谱法分析一部分此溶液以测定产物组成。测得异构体比为220∶1(α-甲苄基氰化物∶苯丙腈)。用气相色谱法在Chiraldex G-TA柱(该柱可分离所得α-甲苄基氰化物的两种对映体)分析第二部分此溶液。用此方法仅测得一种单一区域异构体2-降冰片烷腈。这一分析表明,ee(对映体过量)为13%的对映体之比为56.5∶43.5。实施例45用(iso BHA-P)2-2R,4R-戊二醇/铱催化剂对乙酰苯的不对称转移氢化在氮气氛下将二环[2.2.1]庚-2,5-二烯铱(Ⅰ)氯化物二聚体(0.015g)和0.200g实施例1制备的(iso BHA-P)2-2R,4R-戊二醇(配位体与铱之比5∶1)装入50ml Schlenk烧瓶。加入THF(5.0ml)以溶解该催化剂。向此溶液加入5.0ml2-丙醇,0.58ml乙酰苯和0.012g氢氧化钾。在氮气氛下搅拌该溶液24小时。用气相色谱法在Chiraldex B-PH柱(该柱可分离所得的仲苯乙醇的两种对映体)上分析此反应混合物。该分析表明,ee(对映体过量)为20%的S和R对映体之比为60∶40。实施例46用三(S-1,1′-联-2-萘酚)双亚磷酸酯/铑催化剂对衣康酸和不对称氢化制备催化剂溶液,组成为0.040g双(二环[2.2.1]庚-2,5-二烯)铑(Ⅰ)六氟磷酸盐,0.100g实施例6制备的三(S-1,1′-联-2-萘酚)双亚磷酸酯(配位体与铑之比1.7∶1)和10ml四氢呋喃。将此溶液装入100ml反应器并加热至35℃。用氢将反应器加压至1000psi并搅拌15分钟。开放反应器,并向反应器加入0.50g衣康酸和5ml四氢呋喃的溶液。用1000psi的氢给反应器加压并搅拌2小时。用气相色谱法在Chiraldex B-PH柱(该柱可分离所得丁二酸二甲酯的两种对映体)上分析一部分反应混合物。该分析表明,ee(对映体过量)为20%的对映体之比为60∶40。实施例47用(iso BHA-P)2-2R,4R-戊二醇/铑催化剂对苯乙烯的不对称硼氢化在氮气氛下将双(二环[2.2.1]庚-2,5-二烯)铑(Ⅰ)六氟磷酸盐(0.010g)和0.050g实施例1制备的(iso BHA-P)2-2R,4R-戊二醇(配位体与铑之比2.7∶1)装入50ml Schlenk烧瓶。向烧瓶加入蒸馏过的1,2-二甲氧基乙烷(2.0ml)。通过注射管向烧瓶加入0.23ml苯乙烯和0.23ml儿茶酚硼烷。在氮气氛下搅拌该溶液2小时。将该溶液用4ml甲醇,4.8ml 3.0mol/l NaOH溶液和0.25ml 30%过氧化氢处理。搅拌该溶液3小时并用10ml乙醚萃取。用气相色谱法分析一部分此溶液以测定产物组成。测得异构体比为3∶1(仲苯乙醇∶2-苯基乙醇)。用气相色谱法在Chiraldex B-PH柱(该柱可分离所得仲苯乙醇的两种对映体)上分析此溶液的第二部分。该分析表明,ee(对映体过量)为22%的S和R对映体之比为61∶39。实施例48用(iso BHA-P)2-S-1,1′-联-2-萘酚有机亚磷酸二酯/铜催化剂对苯乙烯的不对称环丙烷化在氮气氛下将氯化铜(Ⅰ)(0.010g)和0.085g实施例9制备的iso BHA-P-S-1,1′-联-2-萘酚有机亚磷酸二酯(配位体与铜之比1.2∶1)装入25ml Schlenk烧瓶。在氮气氛下向该烧瓶加入甲苯(5.0ml)。通过注射管向烧瓶中加入0.10ml三乙胺并在氮气氛下搅拌该溶液15分钟。用注射管加入5.0ml苯乙烯,随后加0.25ml重氮基乙酸乙酯。在氮气氛下搅拌该溶液2小时。用气相色谱法分析一部分反应混合物以测定产物组成。测得产物环丙烷的异构体比为2.1∶1(反式∶顺式)。用气相色谱法在Chiraldex B-PH柱(该柱可分离所得顺乙基-2-苯基环丙烷甲酸酯的两种对映体)上分析此溶液的第二部分。该分析表明,ee(对映体过量)为26%的顺环丙烷对映体之比为63∶37。实施例49用(S-1,1′-联-2-萘酚-P)-2,6-二叔丁基-4-甲基酚有机亚磷酸二酯/钯催化剂对苯乙烯的不对称氢化硅烷化在氮气氛下将顺二氯双(乙腈)钯(Ⅱ)0.015g和0.050g实施例10制备的S-1,1′-联-2-萘酚-P-2,6-二叔丁基-4-甲基酚有机亚磷酸二酯(配位体与钯之比1.6∶1)装入50ml Schlenk烧瓶。向烧瓶加入甲苯(5.0ml)。通过注射管向该溶液加入0.55ml苯乙烯和0.55ml三氯硅烷,并将该溶液于氮气氛下搅拌24小时。用气相色谱法分析一部分反应混合物以测定产物组成。仅测得一种单一区域异构体,2-三氯甲硅烷基乙苯。在真空下将反应混合物浓缩成油状物并溶于0.5ml无水乙醇。向该溶液加入1.0ml三乙胺。用气相色谱法在Chiraldex B-PH柱(该柱可分离所得2-三乙氧基甲硅烷基乙苯的两种对映体)上分析这一溶液。该分析表明,ee(对映体过量)为16%的对映体之比为58∶42。实施例50用(iso BHA-P)2-2R,4R-戊二醇/铑催化剂对苯甲醛和甲基三甲硅烷基二甲基乙烯酮缩二乙醇的不对称醛醇缩合在氮气氛下将双(二环[2.2.1]庚-2,5-二烯)铑(Ⅰ)六氟磷酸盐(0.012g)和0.050实施例1制备的(iso BHA-P)2-2R,4R-戊二醇(配位体与铑之比2.2∶1)加入50ml Schlenk烧瓶。在氮气氛下向该烧瓶加入二氯甲烷(2.0ml)。通过注射管向该烧瓶加入0.20ml苯甲醛和0.40ml甲基三甲硅烷基二甲基乙烯酮缩二乙醇。在氮气氛下搅拌该溶液18小时。将该溶液用10ml 10%盐酸处理并用10ml乙醚萃取2次。用气相色谱法在Chiraldex B-PH柱(该柱可分离所得甲基-2,2-二甲基-3-苯基-3-三甲基甲硅烷氧基丙酸酯的两种对映体)上分析这一溶液。该分析表明,ee(对映体过量)为6%的对映体之比为53∶47。尽管通过前面某些实施例已示意说明了本发明,但不应认为由此限定本发明;而相反地,本发明包含了上文所公开的通指的范畴。在不背离这一精神及其范围的前提下,所做的各种变换和实施方案都是允许的。权利要求1.一种旋光配位体,结构式为其中每个W可相同或不同且为磷、砷或锑,每个X可相同或不同且为氧、氮或一联接W和Y的共价键,Y为一取代或未取代烃基,每个Z可相同或不同且为一取代或未取代烃基或键合于W的Z取代基可桥接在一起形成一取代或未取代的环烃基,且m在至少X和Y之一为旋光的条件下与Y的自由价等值;但附带条件是当每个W为磷而每个X为共价键时,则Z取代基不能全为具有一个直接键合于磷的碳原子的烃基;而当Y为被取代的2碳脂族链且m值为2,两个W取代基都为磷且一个X取代基为氧而另一个X取代基为氮时,则Z取代基不能都为苯基;而当Y为取代的四氢呋喃,m值为2,两个W取代基都为磷且两个X取代基都为氧时,则Z取代基不能都为芳基;而当Y为未取代的3碳脂族链,m值为2,两个X取代基都为氧且两个W取代基都为磷时,则键合于每个磷的Z取代基不能桥接在一起形成取代的一氧-1,2-亚乙基-氧-基团。2.一种旋光的金属-配位体配位催化剂,含有与一种权利要求1的旋光配位体配合的一种金属。3.权利要求2的旋光金属-配位体的配位催化剂,含有一种与所述旋光配位体配位的金属,该金属选自Ⅷ族、ⅠB族和ⅥB族。4.权利要求3的旋光金属-配位体的配位催化剂,其中的Ⅷ族金属包括铑。5.权利要求2-4所包括的旋光金属-配位体配位催化剂,另外还与一氧化碳配位。6.一种旋光金属-配位体配位催化剂母体组合物,含有权利要求2-5所包括的旋光金属-配位体配位催化剂、有机溶剂和自由配位体。7.权利要求1-6所包括的旋光配位体,具有选自如下的结构式其中W、Y、Z和m如权利要求1-6所定义,Y″′可相同或不同且为氢或-取代或未取代烃基。8.权利要求1-7所包括的旋光配位体,包括多亚磷酸酯配位体,有机亚磷酸二酯配位体、双亚磷酸酯配位体、(多)亚磷酸酯配位体、(多)次磷酸酯配位体或(多)膦酸酯配位体。9.一种包括将前手性或手性化合物在有旋光金属-配位体配位催化剂存在下反应生成一种旋光产物的方法,所述旋光金属-配位体配位催化剂含有一与下面结构式旋光配位体配位的金属其中每个W可相同或不相同且为磷、砷或锑,每个X可相同或不同且为氧、氮或一连接W和Y的共价键,Y为取代或未取代的烃基,每个Z可相同或不同且为取代或未取代的烃基或键合于W的Z取代基可桥接在一起形成取代或未取代的环烃基,且在至少Y和Z之一为旋光的且所述方法不是加氢甲酰化或氢化作用的条件下,m为Y的自由价等值。10.一种加氢甲酰化的方法,包括在旋光金属-配位体配位催化剂存在下使前手性或手性烯属不饱和有机化合物与一氧化碳和氢反应生成一旋光产物,所述的旋光金属-配位体配位催化剂包含一与结构式如下的旋光配位体配位的金属其中每个W可相同或不同且为磷、砷或锑,每个X可相同或不同且为氧、氮或连接W和Y的共价键,Y为一取代或未取代烃基,每个Z可相同或不同且为一取代或未取代烃基或键合于W的Z取代基可桥接在一起形成取代或未取代的环烃基,且m在至少Y和Z之一为旋光的条件下与Y的自由价等值;附带条件是当每个W都为磷且每个X为共价键时,则Z取代基不能都为具有一直接键合于磷的碳原子的烃基;而当Y为一取代的2碳脂族链,m值为2,两个W均为磷且一个X取代基为氧而另一X取代基为氮时,则Z取代基不能都为苯基;而当Y为取代的四氢吡喃,m值为2,两个W取代基均为磷且两个X取代基均为氧时,则Z取代基不能都为芳基。11.一种氢化方法,包括在一旋光金属-配位体配位化合物存在下使一前手性或手性化合物反应生成旋光产物,所述旋光金属一配位体配位催化剂含有一与结构式如下的旋光配位体配位的金属其中每个Ar基团可相同或不相同且为取代或未取代的芳基;Y′为-m-价取代或未取代的烃基,选自亚烷基、亚烷基-氧-亚烷基、亚芳基和亚芳基-(CH2)y-(Q)n-(CH2)y-亚芳基,每个y可相同或不同且值为0或1,每个n可相同或不同且值为0或1,每个Q可相同或不相同且为一取代或未取代的二价桥基,选自-CR1R2、-O-、-S-、-NR3-、SiR4R5-和-CO-,其中R1和R2可相同或不同且为氢或为一取代或未取代的选自1-12个碳原子的烷基、苯基、甲苯基和茴香基的基团,而R3、R4和R5可相同或不相同且为选自氢或甲基的基团;m′为2-6的一个值。12.权利要求9的方法,包括加氢酰基化(分子内或分子间的)、氢氰化、氢化硅烷化、加氢羧化、加氢酰胺化、加氢酯化、氢解、氨解、醇解、羰基化、脱碳作用、异构化、转移氢化、硼氢化、环丙烷化、醛醇缩合、烯丙基烷基化、共二聚化、狄尔斯-阿德耳或格利雅交叉偶合方法。13.权利要求11的方法,其中的旋光金属-配位体配位催化剂含有一与所述旋光配位体配位的选自Ⅷ族、ⅠB族和ⅥB族的金属。14.权利要求9、10和12的方法,其中旋光金属-配位体配位催化剂含有一与选自下面结构式的旋光配位体配位的选自Ⅷ族、ⅠB和ⅥB族的金属其中W、Y、Z和m如权利要求9、10和12所定义,且Y″′可相同或不同且为氢或一取代或未取代的烃基。15.权利要求9、10、12和14的方法,其中旋光金属一配位体配位催化剂包括Ⅷ族金属-多亚磷酸酯配位催化剂、Ⅷ族金属-有机亚磷酸二酯配位催化剂、Ⅷ族金属-双亚磷酸酯配位催化剂、铑-亚磷酸酯配位催化剂、铑-有机亚磷酸二酯配位催化剂、铑-双亚磷酸酯配位催化剂、铑-(多)亚磷酸酯配位催化剂、铑-(多)次磷酸酯配位催化剂或铑-(多)膦酸酯配位催化剂。16.权利要求10的方法,其中旋光金属-配位体催化剂还与一氧化碳配合。17.权利要求9-16所包括的方法,该方法是在附加有自由配位体存在或有旋光金属-配位体配位催化剂母体组合物存在的条件下进行,该组合物含有旋光金属-配位体配位催化剂,有机溶剂和自由配位体。18.权利要求9、11和12的方法,其中该前手性或手性化合物包括取代或未取代的烯烃、醛、酮、环氧化物、醇、胺或格利雅试剂。19.权利要求9、11、和12的方法,其中旋光产物包括取代或未取代的醛、酮、羧酸、酰胺、酯、醇、胺或醚。20.权利要求10的方法,其中前手性或手性烯属不饱和有机化合物包括取代或未取代的烯烃,或如下所包括的取代或未取代的烯烃对异丁基苯乙烯、2-乙烯基-6-甲氧亚萘基、3-乙烯基苯基二苯酮、4-乙烯基苯基-2-二噻吩基甲酮、4-乙烯基-2-氟联苯基、4-(1,3-二氢-1-氧-2H-异吲哚-2-基)苯乙烯、2-乙烯基-5-苯甲酰噻吩、3-乙烯基苯基苯基醚、丙烯基苯、异丁基-4-丙烯基苯、苯基乙烯醚或乙烯基氯。21.权利要求10的方法,其中旋光产物包括取代或未取代的醛,或如下所包括的取代或未取代的醛S-2-(对异丁基苯基)丙醛、S-2-(6-甲氧基萘基)丙醛、S-2-(3-苯甲酰基苯基)丙醛、S-2-(对噻吩基苯基)丙醛、S-2-(3-氟-4-苯基)苯基丙醛、S-2-〔4-(1,3-二氢-1-氧-2H-异吲哚-2-基)苯基〕丙醛、S-2-(2-甲基乙醛)-5-苯甲酰基噻吩、S-2-(3-苯氧基)丙醛、S-2-苯基丁醛、S-2-(4-异丁基苯基)丁醛、S-2-苯氧基丙醛或S-2-氯丙醛。22.权利要求9-21所包括的方法,其中旋光产物的对映体过量高于50%。23.权利要求9-22所包括的方法,其中还包括衍生该旋光产物。24.权利要求23的方法,其中该衍生反应包括氧化、还原、缩合、胺化、酯化、烷基化或酰化反应。25.权利要求21的方法,还包括将取代或未取代的醛氧化成旋光的取代或未取代的羧酸,或如下所包括的旋光羧酸S-异丁苯丙酸(布洛芬)、S-甲氧萘丙酸(萘普生)、S-噻丙吩(舒洛芬)、S-氟联苯丙酸(氟比洛芬)、S-吲哚洛芬、S-酮丙酸(酮洛芬)、S-苯酰甲基噻吩乙酸(噻洛芬酸)、S-苯氧苯丙酸、S-乙基甲丙基苯乙酸、苯氧乙基青霉素(非萘西林)和Ketorolac。26.由权利要求9-25所包括方法制备的旋光产物。全文摘要本发明涉及不对称合成,其中将一前手性或手性化合物在有一旋光金属一配位体配位催化剂存在下接触生成一旋光产物。文档编号C07FGK1071431SQ9211086公开日1993年4月28日 申请日期1992年8月20日 优先权日1991年8月21日发明者J·E·巴宾, G·T·惠蒂克 申请人:联合碳化化学品及塑料技术公司

本文地址:https://www.jishuxx.com/zhuanli/20240619/2966.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 YYfuon@163.com 举报,一经查实,本站将立刻删除。