技术新讯 > 微观装置的制造及其处理技术 > 一种空心锥形纳米机器人的制作方法  >  正文

一种空心锥形纳米机器人的制作方法

  • 国知局
  • 2024-07-27 12:24:27

本实用新型属于微纳加工技术领域,尤其涉及一种空心锥形纳米机器人。

背景技术:

纳米机器人是根据分子水平的生物学原理为设计原型,设计制造可对纳米空间进行操作的“功能分子器件”;其研制属于分子仿生学的范畴,所以纳米机器人也称“分子机器人”。理论上讲纳米机器人是大量原子或分子按确定顺序聚集而成为具有确定功能的微型器件。某些情况下,能进行纳米尺度微加工或操作的自动化装置也被称之为纳米机器人。因此,广义上来说,纳米机器人可分为生物纳米机器人和进行纳米加工的自动化装置2种。

纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗。还可以用来进行人体器官的修复工作、作整容手术、从基因中除去有害的dna,或把正常的dna安装在基因中,使机体正常运行。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。第三代生物纳米机器人目前还处于设想阶段。爱因斯坦曾预言:“未来科学的发展无非是继续向宏观世界和微观世界进军。”到21世纪中叶,纳米机器人将彻底改变人类的工作和生活方式。

碳纳米材料是分散相尺度至少有一维小于100nm的碳材料,是用于制造纳米机器人的理想材料,但由于纳米机器人本身的尺寸处于纳米量级,难以找到足够小的动能装置来充当碳纳米材料纳米机器人的发动机,因此如何使碳纳米材料纳米机器人获得动能,是本领域技术人员亟待解决的技术难题。

另外,现有碳纳米材料制成的纳米机器人在运输药物等活性成分时的负载量偏低,如何提高碳纳米材料纳米机器人的活性成分负载量,同样也本领域技术人员亟待解决的技术难题。

技术实现要素:

有鉴于此,本实用新型的目的在于提供一种空心锥形纳米机器人,本实用新型提供的纳米机器人具有良好的永磁性,可在外加磁场的作用下进行运动;且该纳米机器人为空壳结构,具有一定的内部空间,可为药物等活性成分的负载提供一定的容量。

本实用新型提供了一种空心锥形纳米机器人,包括设置有开口的锥形壳体,所述锥形壳体包括碳纳米材料内壳和复合在所述碳纳米材料内壳外侧的永磁性外壳。

优选的,所述碳纳米材料内壳的厚度为20~50nm。

优选的,所述永磁性外壳的厚度为0.5~5nm。

优选的,所述碳纳米材料内壳为石墨烯-碳纳米管复合材料内壳或氧化石墨烯-碳纳米管复合材料内壳。

优选的,所述永磁性外壳为四氧化三铁外壳。

优选的,所述开口位于所述锥形壳体的底面。

优选的,所述锥形壳体的形状为三棱锥、四棱锥、五棱锥或六棱锥。

优选的,所述锥形壳体的内腔底面边长为200~500nm。

优选的,所述锥形壳体的内腔高度为500~1200nm。

与现有技术相比,本实用新型提供了一种空心锥形纳米机器人。本实用新型提供的空心锥形纳米机器人包括设置有开口的锥形壳体,所述锥形壳体包括碳纳米材料内壳和复合在所述碳纳米材料内壳外侧的永磁性外壳。本实用新型提供的纳米机器人为空心锥形结构,具有一定的内部空间,因此相比于传统“实心”结构的纳米机器人,本实用新型提供的纳米机器人更适用于负载药物等活性成分,特别是负载量能得到一定程度的提升。同时,本实用新型提供的纳米机器人选择永磁性材料作为外壳材料,可使本实用新型提供的纳米机器人具有磁性,从而使本实用新型提供的纳米机器人可在外加磁场的作用下进行运动,并可通过控制外加磁场的方向和强度对其运动情况进行调节,解决了现有纳米机器人动力不足,运动速度、方向难以控制的问题。在本实用新型提供的优选技术方案中,纳米机器人的开口为锥形壳体的整个底面,将整个底面作为开口能够为纳米机器人提供较大的开口尺寸,这种设计方式一方面有助于提高纳米机器人在进行药物等活性成分装填时的装填速度,而且由于锥形壳体的内容量相对较小,因此在极短时间内就能将纳米机器人的内腔填满;另一方面在完成活性成分的装填并注入体内后,较大的开口尺寸更有助于活性成分的快速释放。

附图说明

为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。

图1是本实用新型实施例提供的空心锥形纳米机器人的剖面结构示意图;

图2是本实用新型实施例1提供的模具结构示意图。

具体实施方式

下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。

本实用新型提供的空心锥形纳米机器人,包括设置有开口的锥形壳体,所述锥形壳体包括碳纳米材料内壳和复合在所述碳纳米材料内壳外侧的永磁性外壳。

参见图1,图1是本实用新型实施例提供的空心锥形纳米机器人的剖面结构示意图,其中,1表示内壳,2表示外壳。

本实用新型提供的空心锥形纳米机器人为空壳结构,由设置有开口的锥形壳体构成,所述锥形壳体包括内壳1和外壳2。其中,内壳1为碳纳米材料,优选为石墨烯-碳纳米管复合材料或氧化石墨烯-碳纳米管复合材料,更优选为石墨烯-碳纳米管复合材料,该复合材料具有优异的多孔性和稳定性;内壳1的厚度优选为20~50nm,具体可为20nm、21nm、22nm、23nm、24nm、25nm、26nm、27nm、28nm、29nm、30nm、31nm、32nm、33nm、34nm、35nm、36nm、37nm、38nm、39nm、40nm、41nm、42nm、43nm、44nm、45nm、46nm、47nm、48nm、49nm或50nm。

在本实用新型中,外壳2复合在内壳1的外侧,外壳2为永磁性材料,优选为四氧化三铁;外壳2的厚度优选为0.5~5nm,具体可为0.5nm、0.6nm、0.7nm、0.8nm、0.9nm、1nm、1.1nm、1.2nm、1.3nm、1.4nm、1.5nm、1.6nm、1.7nm、1.8nm、1.9nm、2nm、2.1nm、2.2nm、2.3nm、2.4nm、2.5nm、2.6nm、2.7nm、2.8nm、2.9nm、3nm、3.1nm、3.2nm、3.3nm、3.4nm、3.5nm、3.6nm、3.7nm、3.8nm、3.9nm、4nm、4.1nm、4.2nm、4.3nm、4.4nm、4.5nm、4.6nm、4.7nm、4.8nm、4.9nm或5nm。

在本实用新型提供的一个实施例中,所述锥形壳体的开口位于所述锥形壳体的底面,优选为锥形的整个底面。

在本实用新型提供的一个实施例中,所述锥形壳体的形状优选为三棱锥、四棱锥、五棱锥或六棱锥,更优选为正三棱锥、正四棱锥、正五棱锥或正六棱锥;所述锥形壳体的内腔底面边长优选为200~500nm,具体可为200nm、210nm、220nm、230nm、240nm、250nm、260nm、270nm、280nm、290nm、300nm、310nm、320nm、330nm、340nm、350nm、360nm、370nm、380nm、390nm、400nm、410nm、420nm、430nm、440nm、450nm、460nm、470nm、480nm、490nm或500nm;所述锥形壳体的内腔高度优选为500~1200nm,具体可为500nm、550nm、600nm、650nm、700nm、750nm、800nm、850nm、900nm、950nm、1000nm、1050nm、1100nm、1150nm或1200nm。

本实用新型提供的纳米机器人为空心锥形结构,具有一定的内部空间,因此相比于传统“实心”结构的纳米机器人,本实用新型提供的纳米机器人更适用于负载药物等活性成分,特别是负载量能得到一定程度的提升。同时,本实用新型提供的纳米机器人选择永磁性材料作为外壳材料,可使本实用新型提供的纳米机器人具有磁性,从而使本实用新型提供的纳米机器人可在外加磁场的作用下进行运动,并可通过控制外加磁场的方向和强度对其运动情况进行调节,解决了现有纳米机器人动力不足,运动速度、方向难以控制的问题。在本实用新型提供的优选技术方案中,纳米机器人的开口为锥形壳体的整个底面,将整个底面作为开口能够为纳米机器人提供较大的开口尺寸,这种设计方式一方面有助于提高纳米机器人在进行药物等活性成分装填时的装填速度,而且由于锥形壳体的内容量相对较小,因此在极短时间内就能将纳米机器人的内腔填满;另一方面在完成活性成分的装填并注入体内后,较大的开口尺寸更有助于活性成分的快速释放。

为更清楚起见,下面通过以下实施例进行详细说明。

实施例1

空心锥形纳米机器人的制备,包括以下步骤:

a)采用3d打印技术在平板玻璃上打印多个二氧化硅材质的正四棱锥,得到设置有正四棱锥的模具,其结构如图2所示,图2是本实用新型实施例1提供的模具结构示意图,图2中,1-1表示平板玻璃,1-2表示二氧化硅正四棱锥。在本实施例中,每个二氧化硅正四棱锥1-2的底面边长为300nm,高为800nm。

b)采用涂膜的方式在模具表面涂布石墨烯-碳纳米管复合膜层,具体过程包括:在步骤a)制成的模具表面喷涂碳纳米粒子的悬浮液,所述悬浮液由50wt%的纯净水、25wt%的氧化石墨烯和25wt%碳纳米管组成;喷涂结束后,将喷涂有悬浮液的模具置于80℃水蒸气气氛中进行还原处理,使涂布到模具凸起表面的氧化石墨烯还原成石墨烯;最后干燥成膜,即得石墨烯-碳纳米管复合膜层。在本实施例中,所述石墨烯-碳纳米管复合膜层的厚度为40nm。

c)采用磁控溅射的方式在步骤b)得到的石墨烯-碳纳米管复合膜层表面镀制四氧化三铁膜层,镀制过程中,磁控溅射镀膜室的温度控制在30℃、ar流量为220sccm、n2流量为220sccm、真空度为5.0×10-1pa。在本实施例中,所述四氧化三铁膜层的溅射厚度为2nm。

d)沿着模具上每个二氧化硅正四棱锥的底面边缘,对模具上形成的多层复合材料(石墨烯-碳纳米管复合膜层/四氧化三铁膜层)进行激光切割,得到多个分别贴合在对应二氧化硅正四棱锥表面的空心正四棱锥纳米机器人。

e)采用高压水对模具进行冲刷,使空心正四棱锥纳米机器人从二氧化硅正四棱锥上剥离,然后对剥离得到的空心正四棱锥纳米机器人进行烘干和消毒,得到图1所示结构的空心锥形纳米机器人。

以上所述仅是本实用新型的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本实用新型的保护范围。

本文地址:https://www.jishuxx.com/zhuanli/20240726/121850.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 YYfuon@163.com 举报,一经查实,本站将立刻删除。