一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

用于铸造和增材制造高温应用发动机部件的铝合金的制作方法

2022-06-05 16:55:19 来源:中国专利 TAG:


1.本公开涉及铝合金,具体涉及用于高温应用的铝合金,更具体地涉及适于铸造和增材制造发动机部件的铝合金。


背景技术:

2.汽车行业中,铝合金已经越来越多地被用于代替铁合金,从而在发动机部件如发动机缸体和气缸盖的制造中减轻重量。已知按照美国和/或欧洲铝合金标准,铸造发动机缸体和发动机缸盖采用的是例如a356、319和as7gu(a356 0.5%cu)等传统铝合金。传统的内燃机工作温度为大约160℃至190℃,由这些传统铝合金铸造的发动机缸体和气缸盖在上述温度范围内工作时表现出良好的延展性和疲劳性能。
3.现代的轻质燃料高效发动机其功率密度、排气温度和气缸压力峰值已显著增加,使得工作温度提升到250℃至350℃,大大高于传统的160℃至190℃范围。现代发动机的较高工作温度要求制造发动机缸体和缸盖的铝合金具有比常规铸造铝合金更高的拉伸强度、蠕变强度和疲劳强度。此外,现代发动机部件还具有复杂几何形状的阀座、活塞顶、气缸盖等,无法仅通过铸造和机加工来实现,但可通过增材制造来实现。
4.因此,虽然已知的铝合金实现了其预期目的,但是需要一种改进的铝合金,其在升高的工作温度下表现出期望的拉伸、蠕变和疲劳强度特性,并且可以用于金属铸造工艺以及增材制造工艺。


技术实现要素:

5.根据若干方面,公开了一种铝合金,其适用于高温应用的铸造和增材制造。相比例如a356、319和as7gu的传统铝合金,所公开的铝合金包括更高的铜和镁含量。由所公开的铝合金制造的内燃机部件,例如发动机缸体和气缸盖,适于在超过250℃的高工作温度表现出改善的延展性和疲劳性能。该合金按重量计包括:约4-10%的铜(cu)、约0.1-1.0%的锰(mn)、约0.2-5%的镁(mg)、约0.01-1.0%的铈(ce)、约0.01-2%的镍(ni)、约0.01-0.8%的铬(cr)、约0.01-1.0%的锆(zr)、约0.01-1.0%的钒(v)、约0.01-0.3%的钴(co)、约0.01-1.0%的钛(ti)、约1-200ppm的硼(b)、低于约0.5%的铁(fe)、低于约0.1%的其它微量元素以及余量的铝(al)。
6.在本公开的另一方面,该合金包括:约5-8%的cu、约0.2-0.5%的mn、约0.4-3.0%的mg、约0.1-0.5%的ce、约0.25-1%的ni、约0.25-0.35%的cr、约0.15-0.4%的zr、约0.1-0.3%的v、约0.0-0.2%的co、约0.1-0.3%的ti、约70-100ppm的b、低于约0.15%的fe、低于约约0.05%的其它微量元素以及余量的al。
7.在本公开的另一方面,该合金包括:当cu大于6wt%时,mg wt%为约0.2wt%至[0.75 (0.5*cu wt%)]wt%或5wt%中的较小值。
[0008]
在另一方面,该合金包括:当cu wt%为约4-6wt%时,mg wt%为0.2wt%或(6-cu wt%)wt%中的较大值至(0.75 0.5*cu wt%)wt%或5wt%中的较小值。
[0009]
根据若干方面,公开了一种发动机部件,其具有由第一合金形成的铸造本体和具有打印到铸造本体上的第二合金的增材制造部件。第一合金和第二合金中的至少一者包括:约4.0-10.0wt%的铜(cu)、约0.1-1.0wt%的锰(mn)、约0.01-1.0wt%的锆(zr)、约0.2-5.0wt%的镁(mg)以及包含铝(al)的其它元素。
[0010]
在本公开的另一方面,第一合金和第二合金中的至少一者还包括小于约0.05wt%的硅(si)和约0.001-0.5wt%的铁(fe)。
[0011]
在本公开的另一方面,第一合金和第二合金中的至少一者还包括从以下元素组成的组中选择的至少一种元素:约0.01-2.0wt%的镍(ni)、约0.01-1.0%的钛(ti)、约0.01-0.8wt%的铬(cr)以及约0.01-0.3wt%的钴(co)。
[0012]
在本公开的另一方面,第一合金和第二合金中的至少一者包括:当cu大于6wt%时,mg wt%为约0.2wt%至[0.75 (0.5*cu wt%)]wt%或5wt%中的较小值。
[0013]
在本公开的另一方面,第一合金和第二合金中的至少一者包括:当cu wt%为约4-6wt%时,mg wt%为0.2wt%或(6-cu wt%)wt%中的较大值至(0.75 0.5*cu wt%)wt%或5wt%中的较小值。
[0014]
根据本文提供的描述,其它适用领域将变得显而易见。应理解,描述和具体实例仅用于说明目的,并不旨在限制本公开的范围。
附图说明
[0015]
本文描述的附图仅用于说明目的,并不旨在以任何方式限制本公开的范围。
[0016]
图1是示例性内燃机组件的截面图;
[0017]
图2是根据示例性实施例的al-cu-0.35%mn-1.6%mg-1%ni合金的计算相图,示出了相变是关于cu wt%含量的函数;
[0018]
图3是根据示例性实施例的在金属铸造期间的热裂敏感性系数(csc)预测图;以及
[0019]
图4是根据示例性实施例的al-mg-7%cu-1%ni-0.35%mn合金的计算相图,示出了相变是关于mg wt%含量的函数。
具体实施方式
[0020]
以下描述本质上仅仅是示例性的,并不旨在限制本公开、应用或用途。参考附图公开了图示的实施例,其中在所有附图中相同的附图标记表示相应的部件。附图不一定按比例绘制,并且一些部件可能被放大或缩小以示出特定部件的细节。所公开的具体结构和功能上的细节不应被解释为限制性的,而是作为用于教导本领域技术人员如何实践所公开的概念的代表性基础。
[0021]
图1中示出了用于车辆(未示出)的示例性内燃机组件10。发动机组件10包括限定多个内圆柱形孔14的发动机缸体22、火花塞16、进气阀18、排气阀20、气缸盖23和喷射器24。气缸盖23关闭圆柱孔14,以在每个孔14中与在孔14内往复运动的相应活塞12配合来提供燃烧室。活塞12通过连杆28驱动曲轴26,进气阀18和排气阀20由凸轮轴致动。燃料喷射器24用于将燃料直接喷射到燃烧室14中。在适当的时间,火花塞16产生火花以点燃燃烧室14中的空气-燃料混合物。进气歧管34允许空气进入燃烧室14,排气歧管36允许排气从燃烧室14中排出。
[0022]
现代的燃料高效内燃机,尤其是直接喷射和/或强制空气吸入的发动机,与传统发动机相比具有更高的发动机功率密度、排气温度和气缸峰值压力,导致工作温度升高,为约250℃至350℃。为了适应由于工作温度升高使发动机组件10的应力和应变增加的情况,发动机缸体22的主体和气缸盖23可通过使用下面详细描述的新型铝合金的铸造工艺来制造,然后加工至预定公差。发动机缸体22和气缸盖23上的复杂部件可通过增材制造来增设,复杂部件由相同的新型铝合金形成。该新型铝合金具有理想的拉伸、蠕变和疲劳强度性能,这使得发动机组件10能够在超过250℃的高温下工作。
[0023]
已知铸造发动机组件的发动机缸体和气缸盖采用诸如a356、319和as7gu(a356 0.5%cu)的传统铝合金。a356合金在低于200℃的温度下具有良好延展性和疲劳性能,然而,在高于约200℃的温度下,a356合金的抗蠕变性和拉伸强度由于镁-硅(mg/si)沉淀的快速粗化而下降。319合金是用作a356合金的替代品的低成本次级铝合金。因为铝-铜(al/cu)沉淀在较高温度下比a356中的mg/si沉淀稳定,所以含铜319合金的优点是在约200℃的中间温度下拉伸强度和蠕变强度更好。然而,319合金由于铁(fe)和铜(cu)含量高而易于产生缩松,并且在室温下延展性低。as7gu合金是a356合金的变体,利用0.5重量百分比(wt%)的cu固溶强化。类似于a356合金,as7gu合金具有良好的可铸性,同时少量铜的添加提高了在约200℃的中间温度下的抗蠕变性和拉伸强度。a356合金中的mg/si沉淀和319合金中的al/cu沉淀都是热不稳定物质,因此,由于这些沉淀的快速粗化,三种合金在250℃以上温度下机械性能都不佳。
[0024]
下面详细描述的新型铝合金(在此称为“合金”)能够铸造和机械增材制造适于超过250℃至约350℃的高工作温度的发动机部件,例如内燃机组件的发动机缸体和气缸盖。合金组分的实施例如下表1所示,其中除非指出按重量百万分比(ppm)计,否则所有给出的范围都是按重量百分比(wt%)计的:
[0025][0026]
表1
[0027]
该合金包括强度增强元素,例如铜(cu)、镁(mg)、锰(mn)、铁(fe)、锌(zn)和镍(ni)。合金的微观组织包括具有至少一种合金元素中的一种或多种不溶性凝固颗粒和/或沉淀颗粒。与传统铝合金相比,该合金的特征是硅(si)的重量百分比相对较低。
[0028]
参照图2,示出了al-cu-0.35%mn-1.6%mg-1%ni合金的计算相图。在合金中加入cu,通过形成al2cu沉淀进行沉淀硬化。当cu增加到超过5%时,会缩小凝固范围,即液相线与固相线(以虚线表示)之间的温度。凝固范围缩小降低了合金的收缩趋势并改善了可铸
性。当合金经受高于260℃的高温时,添加mn、zr、v元素来减缓al2cu沉淀的粗化。与传统的铝合金相反,合金中的硅被还原,因为它有助于粗化al2cu沉淀并中和mn和zr对al2cu沉淀的影响。添加ni、ti、cr和co,形成纳米级细小沉淀,进一步提高合金的高温性能。可添加ti、b、ce来细化晶粒结构。晶粒尺寸越细,热裂敏感性越低,可铸性越好。如果合金中存在si,加入sr可改性si。
[0029]
镁加入到合金中可减少热裂和密度。图2中示出了含有cu(0-10wt%)和mg(0-5wt%)的合金的热裂敏感性系数(csc)预测图。图3中由虚线界定的区域示出了使合金的合金热裂倾向最小化的优选mg含量。当cu大于6wt%时,该合金包含的mg wt%为:约0.2wt%至[0.75 (0.5*cu wt%)]wt%或5wt%中的较小值。当cu wt%为约4-6wt%时,该合金包含的mg wt%为:0.2wt%或(6-cu wt%)wt%中的较大值至(0.75 0.5*cu wt%)wt%或5wt%中的较小值。
[0030]
参照图4,为新型铝合金的计算相图,示出了相变是关于mg wt%含量的函数。镁的加入不仅提高了新型铝合金的时效响应,而且降低了凝固过程中合金热裂倾向和合金密度。mg将al和cu结合形成s相(al2cumg)。s相al2cumg结构比θ相al2cu具有更活泼的表面。高温固溶处理对s相颗粒的影响要大于θ相al2cu,使得材料性能更好。如图4所示,在铸态微观组织中没有mg2si形成。
[0031]
该合金适用于铸造工艺,包括但不限于:消失模铸造、砂型铸造、精密砂型铸造、低压铸造、高压模铸、永久型铸造、半永久性型铸造、熔模铸造、离心铸造、挤压铸造、反重力/压力铸造。该合金还适用于增材制造(am),包括但不限于:电子束增材制造或电子束熔化(ebm)、金属选择性激光熔化(slm)以及激光工程化净成形(lens)。可制备该合金用于am,首先在高于750℃的温度下熔化合金锭,然后用粉末雾化器雾化成粉末。优选粉末的尺寸为约5微米至1.0毫米(mm)。
[0032]
该合金可用于制造工作温度高于250℃的发动机部件,例如现代发动机的发动机缸体和气缸盖。合金可以铸造成部件的基本形状或主体。可以通过使用相同的合金用以增材制造,将复杂的形状打印到部件的基本形状上。作为非限制性实例,合金可以铸造成气缸盖的形状,然后将气缸盖机加工至预定公差,之后通过增材制造将复杂形状的阀座打印到气缸盖上。基本形状的铸造部分实现低成本制造,而与铸造相比,增材制造部分实现具有精细微结构和低孔隙率的复杂形状。应当理解,增材制造部分可应用到由其它铝合金铸造的构件上,包括但不限于a356、319和as7gu(a356 0.5%cu)。
[0033]
本文所用的术语“约”是指不超过该参数值 /-10%。例如,约5.0wt%的镁(mg)可以包括4.5wt%至5.5wt%的mg。本公开的描述本质上仅仅是示例性的,并且不脱离本公开的一般意义的变型均旨在落入本公开的范围内。这些变型不应视为偏离了本公开的精神和范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献