涡旋式压缩机的制作方法
- 国知局
- 2024-07-30 15:25:42
专利名称:涡旋式压缩机的制作方法技术领域:本发明涉及用在冷冻冷藏库或空调机等中的致冷剂用压缩机,具体地说,涉及涡旋式压缩机的轴颈轴承。背景技术: 作为致冷空调用的电动压缩机,压缩部有往复式、旋转式及涡旋式的,任一种形式都可以用在家庭用、商业用的致冷空调领域中,在任一种形式的压缩机中,驱动压缩机构部的主轴的径向力主要由轴颈轴承支承。这里,以涡旋式压缩机为例,说明现有技术。图7表示现有的涡旋式压缩机的纵剖图(例如,参照日本专利特开平5-79476号公报)。在密闭容器1的内部,在主壳体8的上部设有压缩机构部4,在主壳体8的下部设有电动机7。压缩机构部4使固定涡卷2a和可动涡卷2b啮合而构成压缩室3。主轴5将电动机7的驱动力传递给压缩机构部4。在主壳体8上形成主轴颈轴承6,通过该主轴颈轴承6轴支承主轴5。欧氏环(オルダムリング)9限制可动涡卷2b的自转,止推轴承10承受作用在可动涡卷2b上的止推载荷。在可动涡卷2b的凸台部2c上形成偏心轴颈轴承11。主轴5端部的偏心轴部5a可转动地插入所述偏心轴颈轴承11中。而且,可动涡卷2b通过主轴5的旋转运动相对于固定涡卷2a进行旋转运动。将电动机7的转子7a安装在主轴5的主轴部5b上,将电动机7的定子7b热装固定到密闭容器1上。而且,副壳体12设置在电动机7的下部,在该副壳体12上形成副轴颈轴承13。吸入管14将致冷剂从外部导入密闭容器1内,排出管15将高温、高压的致冷剂排出到外部。在密闭容器1的下方底部设置储存润滑油16的油箱17,压缩侧的高压气体作用在密闭容器1的内部。主轴5具有将润滑油16供给主轴颈轴承6、偏心轴颈轴承11、止推轴承10及各滑动面的贯通孔18,并以从主轴5的下端吸取润滑油16的方式构成。下面说明图7所示的现有涡旋式压缩机的操作。由转子7a和定子7b构成的电动机7产生的旋转力通过热装固定在转子7a上的主轴5传递,并经主轴5的偏心轴部5a传递到可动涡卷2b。可动涡卷2b通过自转防止机构、即欧氏环9进行描绘圆形轨道的旋转运动,以通过形成在其和固定涡卷2a之间的压缩室3的容积变化进行致冷剂的压缩。致冷剂通过吸入管14从外部致冷循环流入密闭容器1内,在压缩室3内被压缩后成为高压,从排出管15流到外部致冷循环。各轴承部的润滑用的供油及压缩室的密封用的供油是如下进行的,即利用主轴5的旋转产生的离心力等吸取储存在密闭容器1底部的润滑油16,并使其通过设置在主轴5中心的贯通孔18。所述涡旋式压缩机,由于压缩机构部4从主轴颈轴承6向轴向突出,所以由压缩载荷等产生的径向力作用在主轴5的偏心轴部5a上。因此,主轴5相对于主轴颈轴承6和副轴颈轴承13成为悬臂结构,主轴5产生大的挠曲变形。因此,在主轴颈轴承6和副轴颈轴承13的轴承端部产生不全面接触的现象。特别是,在径向力的作用位置最近的主轴颈轴承6处作用最大的载荷,从而在主轴颈轴承6的压缩机构部4侧的轴承端部产生显著的不全面接触现象。这样,涡旋式压缩机的轴颈轴承的载荷分布不是沿轴向一样,而是在轴颈轴承端部有载荷极端变高的倾向。结果,轴颈轴承端部附近由于和主轴5直接接触而易于产生磨损等表面损伤。而且,滑动损失和磨损增大,不仅使压缩机的效率降低,还有损可靠性。发明内容本发明是为消除上述现有问题而提出的,其目的在于以简单的结构提供一种不会造成性能低下的、高效率涡旋式压缩机,即使在由于压缩载荷的径向力而产生主轴挠曲变形的情况下,也能防止轴颈轴承的磨损、发热胶着等损伤的出现。根据本发明第1实施例的涡旋式压缩机,具有压缩机构部;驱动压缩机构部的主轴;旋转驱动主轴的电动机;和支承主轴的轴颈轴承部,其特征在于在轴颈轴承部的端部设置环状槽,由此在该环状槽的内周侧形成环状部,环状槽的槽深相对于主轴径的比率为0.15~0.34,环状部的厚度相对于主轴径的比率为0.09~0.19。在根据第1实施例的涡旋式压缩机中,本发明的第2实施例的特征在于将环状槽的外周面作为设置在形成轴颈轴承部的主壳体上的凹部的内周表面。根据本发明第3实施例的涡旋式压缩机,具有压缩机构部;驱动压缩机构部的主轴;旋转驱动主轴的电动机;和支承主轴的轴颈轴承部,其特征在于在轴颈轴承部的端部设置环状槽,由此在该环状槽的内周侧形成环状部;将环状槽的外周面作为设置在形成轴颈轴承部的主壳体上的凹部的内周面。在根据第1至第3实施例的涡旋式压缩机中,本发明的第4实施例的特征在于在主轴表面施加至少包含渗硫氮化处理或磷酸盐处理的化学转换处理。在第1至第3实施例的涡旋式压缩机中,本发明的第5实施例的特征在于作为压缩机构部压缩的工作流体,使用二氧化碳致冷剂;作为润滑压缩机构部及轴颈轴承部的致冷机油,使用聚二醇(PAG)油。根据本发明第6实施例的涡旋式压缩机,具有压缩机构部;驱动压缩机构部的主轴;旋转驱动主轴的电动机;和支承主轴的轴颈轴承部,其特征在于在轴颈轴承部的端部设置环状槽,由此在该环状槽的内周侧形成环状部。图1为本发明第1实施例的涡旋式压缩机的纵剖图。图2为本发明第1实施例的涡旋式压缩机用主轴颈轴承的环状槽附近的主要部分剖视图。图3为解析结果图,示出本发明第1实施例的涡旋式压缩机用主轴颈轴承的内表面的最大接触压力和环状槽的槽深d的关系。图4为解析结果图,示出本发明第1实施例的涡旋式压缩机用主轴颈轴承的内表面的最大接触压力和环状部厚度t的关系。图5为解析结果图,以槽宽w为参数示出本发明第1实施例的涡旋式压缩机用主轴颈轴承的内表面的最大接触压力和环状部厚度t的关系。图6为本发明第2实施例的涡旋式压缩机的纵剖图。图7为现有的涡旋式压缩机的纵剖图。具体实施例方式下面,参照本发明的几个实施例。(实施例1)图1为本发明第1实施例的涡旋式压缩机的纵剖图,图2为本发明第1实施例的涡旋式压缩机用主轴颈轴承的环状槽附近的主要部分剖视图。此处,图1所示的涡旋式压缩机涉及轴颈轴承部以外的压缩机的结构,是和图7详细描述的现有涡旋式压缩机相同的结构,其中对于相同功能的部件,使用相同的标号并省略部分说明。在图1中,可动涡卷2b具有凸台部2c,在凸台部2c的中央形成偏心轴颈轴承11。主轴5的端部具有偏心轴部5a,偏心轴部5a插入偏心轴颈轴承11中。在主壳体8中形成主轴颈轴承20,在副壳体12中形成副轴颈轴承13。主轴5由主轴颈轴承20和副轴颈轴承13支承,并将电动机7的旋转力传递到可动涡卷2b。在本实施例中,特别如图2所示,在主轴颈20的与电动机7相反侧的端部上设有环形槽21。而且,通过该环形槽21在该槽和主轴5之间形成环状部22。当主轴5的直径为16mm时,优选的是,环状槽21的槽深d为2.5mm~5.5mm,环状槽21的槽宽w为0.5mm~2.0mm,环状部22的厚度t为1.5mm~3.0mm。主壳体8及副壳体12使用铸铁材料FC250,对于形成在主壳体8中央的主轴颈轴承20和形成在副壳体12中央的副轴颈轴承13,将其轴承内表面精加工到Ra0.2的程度。同样地,可动涡卷2b使用铝合金材料,对于形成在可动涡卷2b的凸台部2c中央的偏心轴颈轴承11,将其轴承内表面精加工到Ra0.2。主轴5使用SCM415钢,并对主轴5的表面进行渗硫氮化处理。下面对动作进行说明。在由固定涡卷2a和可动涡卷2b形成的压缩室3中,通过可动涡卷2b的旋转运动压缩致冷剂。这时,致冷剂压缩载荷内的、沿轴向作用的止推方向的力作为反力作用在可动涡卷2b上。通过相对该止推方向的力、在可动涡卷2b的端板下表面施加中间压,可动涡卷2b由设置在可动涡卷2b端板上表面和固定涡卷2a之间的止推轴承10支承。致冷剂压缩载荷内的、径向的力作用在主轴5的偏心轴部5a上。主轴5由主轴颈轴承20和副壳体12的副轴颈轴承13支承。这样,主轴5由于承受径向的悬臂压缩载荷而产生力矩,从而产生由所述载荷和轴的刚性决定的挠曲变形。结果,主轴5相对于主轴颈轴承20的表面和副轴颈轴承13的表面被倾斜地支承,特别是,在径向力的作用位置最近的主轴颈轴承20上作用最大的载荷。但是,在本实施例中,由于通过在主轴5和轴承内表面的轴承间隙显著变小(或直接接触)的主轴颈轴承20的上端部设置环状槽21,使轴颈轴承端部处的刚性降低,所以,当在主轴5上施加力矩,轴承内的主轴5出现倾斜,载荷分布在轴承端部处变大时,通过轴承端部的轴承内表面变形,可以使主轴5和轴承内表面的接触应力减少。另外,本发明人等通过使用结构解析发现,环状槽21的形状存在最适当的范围。下面详细描述其内容。图3、图4和图5为构造图1所示的在主轴颈轴承20的上端部设置了环状槽21的涡旋式压缩机的结构解析模型,是在主轴5上作用径向的悬臂压缩载荷时、主轴5和主轴颈轴承20内表面的接触压力分布的解析结果。图3表示主轴5和主轴颈轴承20内表面的最大接触压力与环状槽21的槽深d之间的关系。这里,Pmax.edge为环状槽21的前端部处的最大接触压力,Pmax.groove为环状槽21的槽底部附近的最大接触压力。随着槽深d从0mm(即,没有环状槽)的状态增加,环状槽21的前端部(即,轴承端部)处的最大接触压力Pmax.edge急剧减小,在槽深2.5mm~5.5mm的范围内变成非常小的值,当槽深达到5.5mm以上时,最大接触压力反而增加并成为大的值。而且,在槽深d为2.5mm~5.5mm的范围时,随着槽深d的增加,环状槽21的槽底部附近的最大接触压力Pmax.groove在槽深d增加的同时而减少,而且环状槽21的前端部处的最大接触压力Pmax.edge和槽底部附近的最大接触压力Pmax.groove的差变小。即,在槽深d为2.5mm~5.5mm的范围时,轴颈轴承的载荷分布在轴向方向上最平均化。因此,能保证流体润滑状态,而不会出现轴承端部附近和主轴5直接接触而产生表面损伤的情况。所以,可以实现摩擦系数低、滑动损失小的轴颈轴承。图4表示主轴5和主轴颈轴承20内表面的最大接触压力与环状槽21的环状部22的厚度t之间的关系。当厚度t在1.5mm~3.0mm的范围内增加时,环状槽21的前端部处的最大接触压力Pmax.edge急剧增加,相反地,环状槽21的槽底部附近的最大接触压力Pmax.groove减小。即,环状槽21的前端部处的最大接触压力Pmax.edge和槽底部附近的最大接触压力Pmax.groove的差变小。接着,当厚度t增加到3.0mm以上时,环状槽21的前端部处的最大接触压力Pmax.edge和槽底部附近的最大接触压力Pmax.groove的差显著增大。所以,在环状部22的厚度t为1.5mm~3.0mm的范围时,轴颈轴承的载荷分布沿轴向最平均化。因此,能保证流体润滑状态,而不会出现轴承端部附近和主轴5直接接触而产生表面损伤的情况。所以,实现了摩擦系数低、滑动损失小的轴颈轴承。图5以环状槽21的槽宽w为参数表示主轴5和主轴颈轴承20内表面的最大接触压力与厚度t的关系。根据该结果,在槽宽w为0.5mm~2.0mm的范围内,槽宽w对环状槽21的前端部处的最大接触压力Pmax.edge和环状槽21的槽底部附近的最大接触压力Pmax.groove的值的影响小。即,在前述范围的槽宽w的规格内,主轴5和主轴颈轴承20内表面的最大接触压力没有大的变化,所以无论任何槽宽w,都能保证流体润滑状态,而不会出现轴承端部附近和主轴5直接接触而产生表面损伤的情况。所以,实现了摩擦系数低、滑动损失小的轴颈轴承。而且,槽宽w对最大接触压力的影响小,即使环状槽21的槽宽w比厚度t小,对轴颈轴承特性的影响也小,而且与槽宽w相比,环状槽21的前端部变形时的变形量十分小,所以,当进行狭缝状的环状槽加工,使槽宽w比厚度t小时,不会出现环状槽加工时厚部变形、厚部的加工精度劣化的情况。所以,可以形成高精度的轴颈轴承。另外,即使改变作用在主轴5上的径向悬臂压缩载荷的大小,也可以得到和图3至图5所示的解析结果相同的结果。另外,本发明人等进行了形成有设有根据解析求得的规定范围的环状槽(槽深d=约5mm,环状部22的厚度t=约2mm,槽宽w=约1.5mm)的主轴颈轴承的涡旋式压缩机及形成有不带环状槽的主轴颈轴承的涡旋式压缩机的可靠性实验,结果确认,在和没有环状槽时主轴颈轴承出现异常磨损的条件相同的条件下,当设置环状槽时,在轴承端部附近几乎没有发生表面损伤。从以上的说明可以看出,根据本实施例,即使在使用润滑性不足的代替致冷剂和与其对应的致冷机油的情况下,也可以使轴颈轴承处的滑动损失减少、显著提高压缩机的效率,而不会由于发生磨损而有损可靠性。而且,由于没有轴承损伤的担忧,所以实现了使涡旋式压缩机的可靠性大幅度提高的效果。另外,由于在主轴5的表面施加渗硫氮化处理,所以即使在运转状态为过渡状态、轴承端部附近和主轴5短时间直接接触的情况下,也可以使耐胶合磨损性进一步提高,从而能进一步提高轴颈轴承的可靠性。而且,在对主轴5的表面进行磷酸锰处理等磷酸盐处理的情况下,同样可以提高主轴5的耐磨性。另外,从防止地球暖化的观点看,在使用研究采用的、暖化系数低的天然致冷剂、即CO2致冷剂,在高压侧压力超过临界压力的状态下使压缩机运转的情况下,压缩后的压力变高,作用在各轴颈轴承上的载荷变得非常大,导致轴颈轴承的滑动条件变得更加严峻,但是,通过采用本实施例的压缩机用轴颈轴承,可以使耐磨性提高,从而能得到高的可靠性。另外,从确保回油性的观点看,在致冷机油使用相对CO2致冷剂具有溶解性的聚二醇油(PAG油)的情况下,致冷机油的粘度降低,轴颈轴承的滑动条件变得更加严峻,但是,通过采用本实施例的压缩机用轴颈轴承,可以得到同样的效果。(实施例2)下面,参照本发明的第2实施例。图6为本发明第2实施例的涡旋式压缩机的纵剖图。此处,图6所示的涡旋式压缩机涉及轴颈轴承部以外的压缩机的结构,是和图7详细描述的现有涡旋式压缩机相同的结构,其中对于相同功能的部件,使用相同的标号并省略部分说明。该实施例和第1实施例的不同之处在于,使设置在主轴颈轴承30的与电动机7相反侧的端部处的环状槽31的槽宽w增大,环状槽31的外周表面31a由与设置在主壳体8上端部的凹部32的内周面32a相同的面构成。环状槽的深度d及环状部33的厚度t与第一实施例的相同。即,环状槽的深度d为2.5mm~5.5mm,环状部33的厚度t为1.5mm~3.0mm。由于如图5所示,槽宽w对设置了环状槽的轴颈轴承面内的接触压力的影响小,所以在增加槽宽w的情况下,可以产生和第1实施例相同的环状槽的效果。即,在本实施例中,由于在主轴5和轴承内表面的轴承间隙显著变小(或直接接触)的主轴颈轴承30的上端部设置薄的环状部33,所以轴颈轴承端部处的刚性降低。因此,当因在主轴5上施加力矩导致轴承内的主轴5出现倾斜、载荷分布在轴承端部处变大时,通过轴承端部的轴承内表面变形,可以使主轴5和轴承内表面的接触应力减少。因此,能保证流体润滑状态,而不会出现轴承端部附近和主轴5直接接触而产生表面损伤的情况。所以,实现了摩擦系数低、滑动损失小的轴颈轴承。另外,在本实施例中,由于没有必要像第1实施例那样,形成槽宽狭窄的深槽,所以加工容易,从而能以低成本实现高可靠性的轴颈轴承。从以上的说明可以看出,根据本实施例,可以使轴颈轴承处的滑动损失减少、显著提高压缩机的效率,而不会由于发生磨损而有损可靠性。而且,由于不担心轴承损伤,所以实现了使涡旋式压缩机的可靠性大幅度提高的效果。在第1和第2实施例中,虽然相对主轴颈轴承进行说明,但是在使本发明适用于副轴颈轴承及偏心轴颈轴承的情况下,同样能实现轴颈轴承的滑动损失降低及耐磨性提高的效果。而且,在使本发明适用于涡旋式压缩机及往复式压缩机等其它形式的轴颈轴承的情况下,可以得到同样的效果。另外,在上述实施例中,尽管将主轴径5设为16mm,将环状槽的深度设为2.5mm~5.5mm(比率0.15~0.34),将环状部的厚度设为1.5mm~3.0mm(比率0.09~0.19),但是,不管主轴径大小如何,各比率的范围最好是上述范围。工业应用性如上所述,根据本发明的涡旋式压缩机,即使在由于压缩载荷的径向力,主轴挠曲变形、发生倾斜的情况下,也可以使滑动损失降低,而不会引起由压缩机的轴颈轴承处的直接接触产生的磨损等表面损伤,从而能提供效率及可靠性高的涡旋式压缩机。权利要求1.一种涡旋式压缩机,具有压缩机构部;驱动前述压缩机构部的主轴;旋转驱动前述主轴的电动机;和支承前述主轴的轴颈轴承部,其特征在于在前述轴颈轴承部的端部设置环状槽,由此在该环状槽的内周侧形成环状部,前述环状槽的槽深相对于前述主轴径的比率为0.15~0.34,前述环状部的厚度相对于前述主轴径的比率为0.09~0.19。2.如权利要求1所述的涡旋式压缩机,其特征在于将前述环状槽的外周面作为设置在形成前述轴颈轴承部的主壳体上的凹部的内周面。3.一种涡旋式压缩机,具有压缩机构部;驱动前述压缩机构部的主轴;旋转驱动前述主轴的电动机;和支承前述主轴的轴颈轴承部,其特征在于在前述轴颈轴承部的端部设置环状槽,由此在该环状槽的内周侧形成环状部;将前述环状槽的外周面作为设置在形成轴颈轴承部的主壳体上的凹部的内周面。4.如权利要求1至3中任一项所述的涡旋式压缩机,其特征在于在前述主轴的表面施加至少包含渗硫氮化处理或磷酸盐处理的化学转换处理。5.如权利要求1至3中任一项所述的涡旋式压缩机,其特征在于作为前述压缩机构部压缩的工作流体,使用二氧化碳致冷剂;作为润滑前述压缩机构部及前述轴颈轴承部的致冷机油,使用聚二醇(PAG)油。6.一种涡旋式压缩机,具有压缩机构部;驱动前述压缩机构部的主轴;旋转驱动前述主轴的电动机;和支承前述主轴的轴颈轴承部,其特征在于在前述轴颈轴承部的端部设置环状槽,由此在该环状槽的内周侧形成环状部。全文摘要本发明提供了一种涡旋式压缩机,其具有压缩机构部(4);驱动压缩机构部的主轴(5);旋转驱动主轴(5)的电动机(7);和支承主轴(5)的轴颈轴承部(20),其中,在轴颈轴承部(20)的端部设置环状槽(21),由此在该环状槽(21)的内周侧形成环状部(22),环状槽的槽深相对于主轴径的比率为0.15~0.34,构成环状槽的环状部的厚度相对于主轴径的比率为0.09~0.19,这样,以简单的结构提供了一种在大的运转范围内不会造成性能低下的、高效率涡旋式压缩机,所述压缩机即使在由于压缩载荷的径向力而产生主轴(5)挠曲变形的情况下,也能防止轴支承主轴(5)的轴颈轴承的磨损、发热胶着等损伤的出现,并具有高的可靠性。文档编号F04C29/00GK1751183SQ0382480公开日2006年3月22日 申请日期2003年9月19日 优先权日2002年9月24日发明者西胁文俊, 长谷川宽, 冈市敦雄 申请人:松下电器产业株式会社
本文地址:https://www.jishuxx.com/zhuanli/20240729/170482.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 YYfuon@163.com 举报,一经查实,本站将立刻删除。
上一篇
干式泵的改进的制作方法
下一篇
返回列表