即时冷却的压缩机系统的制作方法
- 国知局
- 2024-07-30 16:25:11
专利名称:即时冷却的压缩机系统的制作方法技术领域:本发明一般涉及制冷系统,特别是涉及带有防止压缩机过热的装置的制冷系统,它是通过有选择地将液体制冷剂注入吸收集流腔中实现的。对于最近公众所关心的由于释放各种制冷剂,如R12,所造成的臭氧层的破坏的一种反应是,政府对使用这些制冷剂实行了更严格地限制。这些限制要求未来的制冷系统采用替代的制冷剂。目前,做为常用制冷剂,如R12和R502的替代物不能在低温下良好地工作,因为它们产生高排出温度,这会损坏压缩机或缩短其寿命,特别是在高负载和高压缩比的条件下。液体注入系统早已被用在制冷系统中,以便限制或控制过量排出的气体温度,该温度会使压缩机过热并可能导致压缩机润滑剂分解。一般来说,这些现有系统采用毛细管或热膨胀阀来控制液体的注入。然而,这些系统效率很低,并且毛细管和热膨胀阀在不需要注入冷却期间易于泄漏。该泄漏会导致压缩机溢流。另外,当压缩机关闭时,高压液体会从收集器通过毛细管和膨胀阀转移到低压吸收侧,导致压缩机阻滞。还有,这些现有系统采用的热传感器通常位于压缩机和冷凝器间的排出管路上。这样设置传感器常常会导致冷却不充分,这是由于在排出管路周围环境温度和排出气体质量流率等多种因素影响下,导致输出压缩室的排出气体的实际温度和被传感的温度之间有很大差异而造成的。这样,压缩机就会由于错误地传感排出气体的温度而产生过热现象。本发明通过下述装置克服了上述问题,这是通过在压缩机的排出室内设置一温度传感器,使其紧靠并直接与输出压缩室的压缩气体接触来实现的。这样,就可获得更精确的压缩机发热情况,而不会由外界因素产生误差。在目前一个优选的实施例中,本发明采用一强制电磁驱动开关阀与一预定的孔口配合,在无需冷却的期间用来防止高压液体泄漏。另外,上述孔口的尺寸应适合一最大流率,这样就能达到冷却要求,同时避免压缩机溢流。本文中采用的“液体注入”这一术语代表来自上述系统冷凝器的是液体制冷剂,然而实际上当其通过毛细管、膨胀阀或其它孔口时部分液体会蒸发,使注入压缩机的物质为两相流体(液体和蒸汽)。本发明还直接将流体(即,两相流体)在选定的位置注入吸收室,以保证注入的流体均匀流入每个压缩室,进而达到最大的压缩机效率,同时保证最大和均匀的冷却效果。在本发明的另一实施例中,最好在吸收口或阀门关阀后立即将制冷剂流体直接注入压缩室,以便冷却压缩室和其中的吸收气体。这种设置可提供更高的效率,但由于需要额外的控制部件和其它硬件,其成本也较高。本发明的其它优点和特征,将通过下面结合附图的详细描述变得更加清楚。图1是本发明的带有即时冷却液体注入系统的制冷系统的简图;图2是安装了本发明的注入系统的制冷压缩机的侧视图;图3是图1中制冷压缩机的局部剖视图,该剖面是沿图2和图4中3-3线进行的;图4是图2中制冷压缩机去掉顶盖后的顶视图;图5是做为采用本发明注入冷却系统的压缩机工作时间的函数的排出温度的曲线图;图6是类似于图4的具有本发明即时冷却液体流入系统的另一种制冷压缩机的剖视图;图7是类似于图1的本发明制冷系统另一实施例的简图。下面参见附图,特别是图1。图1中表示了一包括带有吸收管路12和排出管路14的压缩机10的已知的制冷回路。排出管路14连通至冷凝器16,冷凝器的输出经过管路20,收集器22和管路24送至蒸发器18。接着,蒸发器18的输出经过管路28送至储存器26,其输出端与管路12连接。上述制冷回路是用于建筑物空调和其他制冷系统的已知的系统。本发明提供了一种独特的即时冷却流体注入系统,它概略地以标号30表示。该系统进行运转以防止压缩机潜在的过热现象发生。该流体注入系统带有一设在压缩机10内的温度传感器32,它向电子控制器34提供一信号,指示从压缩机10排出的被压缩的气体的温度。还设有一流体管路36,其一端在冷凝器16的输出端或接近该端处与管路20连接。管路36的另一端连接到电磁阀38上,阀38由控制器34控制。电磁阀38的输出通过一限制孔口40和管路42供入压缩机10上的注入口。从图2至图4可见,压缩机10为半密封往复活塞式并具有一壳体44,壳体内有一对纵向对齐并排设置的压缩气缸46、48。壳体44的一端带有一吸收入口50,吸收气体通过注入口进入。然后,吸收气体通过设在壳体内的电机室向上流入吸收集流腔52(图4中由点划线表示),腔52向前延伸并大致围绕在气缸46、48周围。多个通道54用来向上导通吸收气体,使其通过阀板装置56。随后,该气体被分别吸入气缸46、48进行压缩。一旦吸收气体在气缸46、48内得到压缩,它就通过阀板装置56排入由上盖60限定的排出室58。从图3和图4可见,管路42连接到注入部件62上,部件62在壳体44的侧壁上并在大致处于气缸46、48中间的位置通入吸收集流腔52,同时直接位于通道54下方。注入部件的位置是由实验决定的,使其具有最高效率并保证均匀冷却每个气缸。应为给定的压缩机模型选好上述注入部件的位置,使从每一压缩室输出的压缩气体处于一预定的范围(既,从最热至最冷),最好这些温度应大致相等。应该注意到,最好尽量靠近气缸注入液体,以使工作效率达到最佳值。从图2和图3还可以看到,温度传感器32装在上盖60上的孔64内并伸入排出室58,以便同来自气缸46、48的排出气体直接接触。最好传感器32设在大致为气缸46、48之间中心并尽量靠近排出阀装置66的位置,以便保证能探测到每一个气缸的准确温度。我们认为该位置应是使温度传感器最靠近来自压缩室的最热的压缩气体的位置。电磁阀38最好是开关阀,并能承受大量的工作循环,同时使其处于一防泄漏位置,以便防止可能产生的压缩机溢流和阻滞。另一方面,上述电磁阀可用另一种阀门代替,这种阀门具有响应排出气体的探测温度,调节进入吸收集流腔52的液体流量。例如,可采用一步进电机驱动的阀门,它响应排出温度的增加而逐渐开大。还有一种选择是采用一脉冲宽度调节阀,它响应排出温度的变化通过控制脉冲宽度或脉冲频率来调节注入液体的流量。为了限制通过注入部件62进入吸收集流腔52的最大流体流量,以及将上述流体压力降低到接近来自蒸发器的吸收气流的压力值,在阀38下游设置了一孔口40。最好孔口40的尺寸应能在蒸发器温度约为-40°F、冷凝器温度约为130°F以及压差为300磅/吋2的条件下时,使通过该孔口的气流体流量为最大,以保证向压缩机10提供适当的冷却液体,从而防止压缩机过热。蒸发器温度指的是制冷剂已经通过膨胀阀并进入蒸发器的饱和温度。冷凝器温度指的是制冷剂离开冷凝器时的饱和温度。它代表了最差状态下的设计依据。上述最大流量对于不同压缩机是不一样的,该最大流量应足以防止压缩机排出温度过高(但并未高到引起压缩机溢流或阻滞)。应该注意到孔口40的尺寸应使其产生的压力降大致等于冷凝器出口和跨越蒸发器的压缩机吸收入口之间产生的压力降,以免蒸发器受到可能导致过量的系统效率损失的反压,这一点很重要。在工作中,当最初的启动是从“冷”的条件下开始时,阀38应处于关闭状态,因为传感器32探测到的压缩机10的温度将是足够低的,无需额外的冷却。这样,制冷回路就以通常的方式工作,制冷剂通过冷凝器16,收集器22,蒸发器18、储存器26和压缩机10进行循环。当制冷系统的负载增加时,排出气体的温度随之增加。当传感器32探测到的从压缩机10的压缩室输出的排出气体的温度达到图5中峰值所示的第一预定温度时,控制器34将阀38打开,使从冷凝器16输出的高压液体制冷剂经管路36、阀38孔口40、管路42并通过部件62注入压缩机10的吸收集流腔52。应该注意到,当液体制冷剂通过孔口40时通常会部分蒸发,使通过部件62进入的流体成为典型的两相物质(部分气体,部分液体)。上述冷的液体制冷剂将与流过吸收集流腔52的相对较热的吸收气体混合并被分别吸入气缸46、48。该液体制冷剂的蒸发将冷却吸收气体和压缩机本身,从而导致传感器32探测到的排出气体的温度下降(见图5)。一旦传感器32探测到的排出气体的温度降到低于第二预定温度,控制器34将关闭阀38,进而切断液体制冷剂流,直到传感器32探测到的排出气体的温度再次达到第一预定温度。需将阀门38打开的第一预定温度最好低于对压缩机的工作和使用寿命会造成损害的温度,特别是低于会造成压缩机10所采用的润滑部分解的温度。第二预定温度最好设定在充分低于第一预定温度的值,以免为防止压缩机溢流而频繁工作的阀门38过快的启闭。在本发明的一实施例中,第一预定温度设定在约290°F而第二预定温度设定在约280°F。图5的曲线表示了做为时间的函数的排出气体温度的变化,上述预定温度是针对蒸发温度为-25°F、冷凝温度为110°F而回流温度为65°F的条件而设定的。回流温度指的是从蒸发器回流进入压缩机时,制冷剂的温度。由上可见,传感器32和注入部件62的位置对保证压缩机正确均匀的冷却及发挥系统的最大工效是至关重要的。图6表示了在具有三个压缩气缸74,76,78的半密封式压缩机72中,注入部件68和排出气体传感器70的位置,部件68通入设在压缩机壳体内的吸收集流腔80(由点划线表示并延最后两个气缸的两侧延伸)且最好位于正对中央的气缸76处。同样,传感器70通过盖子(未示出)伸入并靠近中央气76的上方,便与从三个气缸中输出的排出气体直接接触。另外,我们认为该位置将使传感器离出自各个压缩室的最热的压缩气体最近,因而是最佳位置。本实施例的工作过程与上述实施例大体相同。图7表示的是类似于图1所示的制冷系统。其中,与图1中相同的部件用带扩号的相同参考号表示。该制冷系统表示了本发明的另一实施例,其中,只要活塞一完成吸收冲程(即只要活塞通过其下死点位置),就将制冷流体直接注入每个气缸。该实施例对系统工作效率提供了更大的改进,这是由于注入的流体并不排出吸入压缩机的吸收气体,而是加入被压缩的流体,使活塞的每一冲程具有更大的质量流。如图7所示,压缩机10′具有一驱动分别位于气缸88、90内的往复运动活塞84、86的曲轴82。在数量上与压缩机10′内气缸数相等的多个签条92设在与曲轴82相连的转动件94上,该签条设计成当曲轴82转动时,它移过传感器96并被该传感器探测到。签条92相对传感器96的位置,使传感器96可产生一表明相应的活塞通过下死点的信号。传感器96产生的这些信号将送入控制器98。为了向每一气缸88、90提供制冷流体,设置了一对适当的阀门100、102,每一阀门的输入端与流体管路36′连接并设计成在控制器98的控制下在开、关位置之间变化。(下面将进行详述)。孔口104、106分别与阀门100、102相连。孔口104、106的作用大致同上述孔口40相同,区别仅在于孔口104、106设计成维持注入气缸的流体的压力略高于气缸内吸收气体的压力,在准备将该流体注入时,该压力高于从蒸发器流回的吸收气体的压力。阀门100、102和孔口104、106的输出分别通过流体管路108、110送至气缸88、90。管路108、110通过任何适当的入口装置,如设置在气缸侧壁上的开孔或通过与侧壁相连的阀板与气缸88、90连接。另外,如果需要的话,可设置适当的止回阀,以防止在压缩冲程内制冷制的回流。在上盖116限定的排出室114内设有一传感器112,用来将指示输出气缸88、90的压缩气体温度的信号送至控制器98。传感器112与上述传感器32和70大致相同,并以与传感器32和70大致相同的方式位于排出室114内并发挥相同的作用。在运行中,当传感器112向控制器98指示输出气缸88、90的压缩气体的温度超过预定温度时,控制器98将开始从传感器96处寻找启动信号。当曲轴82携带的签条92经过传感器96时,一指示活塞84和86之一通过下死点的信号送入控制器98。接着,控制器启动相应的阀门100或102至打开位置,并保持一短暂的预定时间,因而使制冷剂流体能流入相应的气缸,与早先吸入气缸进行压缩的吸收气体混合并将其冷却。当另一签条92通过传感器96时,上述循环对另一气缸重复一次,以便向该气缸提供冷却用制冷流体。应该选择使阀门100和102保持打开位置原有效的时间周期,以便提供充分的冷却,避免压缩机10′过热,同时避免气缸产生溢流或阻滞的可能性。在某些应用中,需要改变阀门打开的时间长短以响应由传感器112探测到的排出气体的温度超过预定温度的量值。无论如何,一旦传感器112探测到的压缩气体的温度降低到第二预定温度以下,控制器98将停止启动阀门100和102,这时制冷系统将以常规方式工作,没有任何流体注入。应该注意到,本发明是以往复式活塞压缩机为例进行了描述,它同样可应用于其他类型压缩机如旋转式,螺旋式,涡旋式等等。由于本发明采用当排出气体输出压缩室时直接暴露在其中的传感器,就可基本消除由于外界因素产生的读数误差。而且,采用强制控制阀保证了只有在需要对压缩机实行冷却时才提供冷却流体。另外,提供适当大小的孔口将限制最大流体流量,以保证压缩机不会溢流。显然,本发明的最佳实施例是经过仔细计算的,以提供上述优点和特点,然而在下述权利要求范围内本发明可有各种改型和变化。权利要求1.一种制冷系统包括一压缩机,它具有一吸收集流腔、一排出室、一冷凝器和一连接到压缩机上的蒸发器,它们串联在一封闭的回路系统中,防止压缩机过热的改进的装置包括在压缩机排出室内并处于压缩气体流路中的探测压缩气体温度的传感器装置,连接到冷凝器出口和压缩机吸收集流腔之间的流体管路以及根据探测到的压缩气体温度有选择地控制从冷凝器出口流至上述吸收集流腔的流体流量的控制装置。2.按照权利要求1的制冷系统,其中,上述传感器装置位于上述压缩机排出室内。3.按照权利要求1的制冷系统,其中,上述控制装置包括设置在上述流体管路中的阀门装置。4.按照权利要求3的制冷系统,其中,阀门被启动在开,关位置之间变化,从而有选择地控制上述流体流。5.按照权利要求3的制冷系统,其中,阀门装置可进行运转来调节上述流体流量。6.按照权利要求5的制冷系统,其中,上述阀门装置是一脉冲宽度调节阀。7.按照权利要求4的制冷系统,其中,控制装置可以运转,在第一预定温度,将阀门驱动到打开位置,在第二预定温度,将阀门驱动到关闭位置。8.按照权利要求7的制冷系统,其中,传感器装置位于压缩机排出室内。9.按照权利要求1的制冷系统,其中,压缩机包括多个压缩室,每一室接受来自吸收集流腔的吸收气体并将压缩气体排入排出室,该流体管路通入吸收集流腔的一选定位置,从而保证从每一压缩室输出的压缩气体的温度低于第一预定温度。10.按照权利要求9的制冷系统,其中,上述位置选定成当控制装置允许流体流过上述流体管路时,保证来自每一压缩的压缩气体温度处于预定范围内。11.按照权利要求10的制冷系统,其中,上述位置选定成保证来自每一压缩室的压缩气体温度基本相等。12.按照权利要求1的制冷系统,其中,压缩机包括多个压缩室,每一压缩室接受来自吸收集流腔的吸收气体并通过排出口将压缩气体排入排出室,传感器装置位于排出室内紧靠上述排出口的位置,具有最高温度的压缩气体通过该排出口进入排出室。13.按照权利要求12的制冷系统,其中,流体管路通入吸收集流腔的一选定位置,以保证从压缩室输出的压缩气体温度低于第一预定温度。14.按照权利要求3的制冷系统,其中,控制装置还包括一孔口,该孔口位于阀门装置和吸收集流腔之间的流体管路中,该孔口限制通过流体管路的流体流量。15.按照权利要求14的制冷系统,其中,孔口具有这样的尺寸,使当阀门打开时,通过该孔口的流体产生一压力降,足以避免受到蒸发器负压的作用。16.一种制冷系统包括一压缩机,该压缩机具有一吸收集流腔、一排出室和多个压缩室,还具有一冷凝器、一蒸发器和在一串联封闭回路中连接压缩室、冷凝器和蒸发器的装置,上述吸收集流腔将吸收气体供入每一压缩室,每一压缩室通过与其相连的排出口将压缩气体排入上述排出室,防止压缩机过热的改进的装置包括位于排出室内大致处于排出口中央以便与进入排出室的压缩气体直接接触的传感器装置,该传感器装置探测压缩气体的温度,在冷凝器出口和压缩机的吸收集流腔之间有一流体管路,一控制装置根据传感器装置探测到温度高于第一预定温度的信号,允许流体从冷凝器出口流到吸收集流腔并根据传感器装置探测到温度低于第二预定温度的信号,阻止流体流动,从而防止压缩机产生过热现象。17.按照权利要求16的制冷系统,其中,压缩机包括将吸收气体从吸收集流腔导通到每一压缩室的通道,流体管路通入吸收集流腔的一选定位置,使从每一压缩室输出的压缩气体的最高温度处于从每一压缩室输出的压缩气体的预定的最低温度范围内。18.按照权利要求17的制冷系统,其中,上述最高温度和最低温度大致相等。19.按照权利要求17的制冷系统,其中,传感器位于排出室内,靠近输出具有最高温度的压缩气体的排出口。20.按照权利要求19的制冷系统,其中,压缩机是往复活塞式压缩机。21.按照权利要求16的制冷系统,其中,控制装置包括位于上述流体管路内的阀门装置,该阀门装置根据探测温度高于第一预定温度的信号被驱动到打开位置,以允许流体流至吸收集流腔,又根据探测温度低于第二预定温度的信号被驱动到关闭位置,以阻止流体在上述流体管路中流动。22.按照权利要求21的制冷系统,还包括在阀门装置和吸收集流腔之间的流体管路内的孔口,该孔口限制通过流体管路的流量,以防止压缩机的溢流。23.一种制冷系统包括一压缩机,它具有一吸收集流腔,一排出室、一冷凝器和一连接到压缩机上的蒸发器,它们串联在一封闭的回路系统中,防止压缩机过热的改进的装置包括在压缩机排出室内并处于压缩气体流路中的探测压缩气体温度的传感器装置,一流体管路连接到冷凝器出口和压缩机上,控制装置根据探测到的压缩气机的温度,有选择地控制从冷凝器出口流向压缩机的流体流。24.按照权利要求22的制冷系统,其中,控制装置包括在上述流体管路内的可有选择地启动的阀门,该流体管路通入上述压缩室,而当吸收气体注入压缩室的过程已经完成时或紧接其后,阀门驱动到打开位置。25.按照权利要求24的制冷系统,还包括向控制器提供一表明向压缩室注入吸收气体已经完成的信号的计时装置。26.按照权利要求25的制冷系统,其中,压缩机是往复活塞式压缩机,而计时装置向控制器提供一表明该活塞处于下死点位置的信号。27.按照权利要求23的制冷系统,其中,压缩机包括多个压缩室,流体注入管路通入每一压缩室,每一流体注入管路均设有阀门装置,流体管路与每一阀门装置连接,控制器启动选定的阀门装置,以控制流体从冷凝器出口流至选定的压缩室。全文摘要一种带有防止压缩机过热的装置的制冷系统,它将液体制冷剂有选择地从冷凝器出口送至压缩机。在一个实施例中,来自压缩机的制冷剂液体被注入压缩机的吸收集流腔。在另一实施例中,该流体直接注入压缩室。包括位于压缩机排出室内的温度传感器和响应控制信号的阀门装置的控制装置控制液体制冷剂流至吸收集流腔或压缩室。文档编号F04C18/02GK1051080SQ90108429公开日1991年5月1日 申请日期1990年10月15日 优先权日1989年10月17日发明者泰拉克·阿布代尔·雷姆·迪阿布 申请人:科普兰公司
本文地址:https://www.jishuxx.com/zhuanli/20240729/172860.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 YYfuon@163.com 举报,一经查实,本站将立刻删除。
上一篇
滑油回收系统的制作方法
下一篇
返回列表