电容式换能装置及其制造方法与流程
- 国知局
- 2024-07-27 12:35:02
本发明是有关于一种换能装置及其制造方法,且特别是有关于一种电容式换能装置及其制造方法。
背景技术:
在目前超声换能器的发展中,可分为块材压电陶瓷换能器(bulkpiezoelectricceramicstransducer)、电容式微机械超声换能器(capacitivemicromachinedultrasonictransducer,cmut)以及压电式微机械超声换能器(piezoelectricmicromachinedultrasonictransducer,pmut),其中又以块材压电陶瓷换能器最为主要广泛使用。然而在未来的趋势中,由于微机械超声换能器通过微机电系统(microelectromechanicalsystems,mems)工艺制备,因此与集成电路有较大的工艺兼容性,从而成为微型化超声系统最佳的实现方案。因此可进一步实现大规模的制备和封装,应用在无损检测、医学影像、超声显微镜、指纹识别或物联网等领域。
然而,在目前的电容式微机械换能器的制作中,需使用上真空镀膜技术以及多次的蚀刻制程才能完成。因此,将使得电容式微机械超声换能器的制造成本较高、设备昂贵。除此之外,目前的制作方式也将会使基板容易产生弯曲,并且有蚀刻后均匀度不佳的问题。
技术实现要素:
本发明提供一种电容式换能装置及其制造方法,可简化制作过程并减少制作成本,同时可避免板面翘曲以获得良好的测量质量。
本发明提供一种电容式换能装置,包括基板、下电极、振荡元件、上电极以及多个封孔结构。下电极配置于基板。振荡元件包括振荡部、连接部以及多个穿孔。振荡部藉由连接部连接于下电极以形成空腔。上电极配置于振荡部,振荡部位于上电极与下电极之间。多个封孔结构配置于振荡元件。多个封孔结构分别沿第一方向延伸穿过多个穿孔。第一方向垂直于基板的延伸方向,且第二方向垂直于第一方向。其中,基板与下电极在第二方向上重叠于多个穿孔的一部分在第一方向上的高度总和小于基板与下电极在第二方向上未重叠于多个穿孔的另一部分在第一方向上的高度总和。
本发明另提供一种电容式换能装置的制造方法,包括下列步骤:依序提供基板、下电极以及牺牲层;依序配置振荡元件以及上电极至下电极并覆盖牺牲层;在振荡元件上形成多个穿孔并移除牺牲层以形成空腔;移除一部分在第一方向上重叠于多个穿孔的下电极,其中第一方向垂直于基板的延伸方向,第二方向垂直于第一方向;以及提供液态材料至多个穿孔以形成多个封孔结构,其中多个封孔结构分别沿第一方向延伸穿过多个穿孔,且基板与下电极在第二方向上重叠于多个穿孔的一部分在第一方向上的高度总和小于基板与下电极在第二方向上未重叠于多个穿孔的另一部分在第一方向上的高度总和。
基于上述,在本发明的电容式换能装置中,振荡元件用以作为振荡部,基板与下电极在水平方向上重叠于穿孔的一部分的高度总和小于基板与下电极在水平方向上未重叠于穿孔的另一部分的高度总和。因此,配置于穿孔中的封孔结构可用使用液态材料制作而成。如此一来,可不需对封孔结构进行真空镀膜及蚀刻制程,进而可简化整体制作过程并减少制作成本。同时,可避免因镀膜所产生的板面翘曲以获得良好的测量质量。
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。
附图说明
图1为本发明一实施例的电容式换能装置的剖面示意图。
图2a至图2f依序为图1的电容式换能装置制程的剖面示意图。
图3为本发明另一实施例的电容式换能装置的剖面示意图。
图4为本发明另一实施例的电容式换能装置的剖面示意图。
图5为本发明另一实施例的电容式换能装置的剖面示意图。
图6为本发明另一实施例的电容式换能装置的剖面示意图。
图7为本发明一实施例的电容式换能装置的制造方法流程图。
附图标记
10:牺牲层
100、100a、100b、100c、100d:电容式换能装置
110、110a:基板
120、120a、120b:下电极
130:振荡元件
132:振荡部
134:连接部
140:上电极
150:封孔结构
c:空腔
d:孔径
d1:第一方向
d2:第二方向
g:挖空处
h1、h2:高度总和
h3:高度
s1、s2、s3:顶面
s200、s201、s202、s203、s204:步骤
v1、v2:凹槽
具体实施方式
下面结合附图对本发明的结构原理和工作原理作具体的描述:
图1为本发明一实施例的电容式换能装置的剖面示意图。请参考图1。本实施例的电容式换能装置100例如为电容式微机械超声换能器,可应用于无损检测、医学影像、超声显微镜、指纹识别或物联网等领域,本发明并不限于此。在本实施例中,电容式换能装置100包括基板110、下电极120、振荡元件130、上电极140以及多个封孔结构150。
图2a至图2f依序为图1的电容式换能装置制程的剖面示意图。请同时参考图1及图2a。下电极120配置于基板110。详细而言,在制造电容式换能装置100的步骤中,下电极120例如是以微影光刻制程(photoengravingprocess,pep)形成于基板110表面。基板110例如为硅基板,而下电极120的材料例如为钛或铝,但本发明并不限于此。
请同时参考图1及图2b。接着,在上述步骤之后,配置牺牲层10至下电极120。牺牲层10用以在后续步骤中被蚀刻以形成空腔。在本实施例中,牺牲层10在第一方向d1(即垂直基板110延伸方向)上的高度皆相同。牺牲层10例如是以微影光刻制程形成于基板110表面,且牺牲层10例如为铜,但本发明并不限于此。
请同时参考图1及图2c。接着,在上述步骤之后,配置振荡元件130至下电极120并覆盖牺牲层10。振荡元件130的一部分用以作为电容式换能装置100中的振荡薄膜。举例而言,在本实施例中,振荡元件130例如是硅的氮化物(siliconnitride,sinx),且其在第一方向d1上的高度皆相同,例如为4500埃,但本发明并不限于此。振荡元件130例如是以微影光刻制程形成于牺牲层10及下电极120的表面,本发明亦不限于此。
请同时参考图1及图2d。接着,在上述步骤之后,配置上电极140至振荡元件130。上电极140与牺牲层10呈置中配置,且在平行于水平面的平面上所占面积略小于牺牲层10。振荡部130位于上电极140与下电极120之间。上电极140例如是以微影光刻制程形成于振荡元件130表面,且上电极140的材料相同于下电极的材料,例如为钛或铝,但本发明并不限于此。
请同时参考图1及图2e。接着,在上述步骤之后,在振荡元件130上形成多个穿孔h并移除牺牲层10以形成空腔c。具体而言,在此步骤中,对振荡元件130进行蚀刻制程(etching)以在牺牲层10(见如图2d)的边缘处形成穿孔h,用以进行后续对牺牲层10的蚀刻制程。振荡部132藉由连接部134连接于下电极120。接着,再对覆盖于内部的牺牲层10进行蚀刻以形成空腔c,从而形成振荡部132以及连接部134。空腔c在第一方向d1上的高度皆相同,例如为2000埃,但本发明并不限于此。
值得一提的是,在此步骤中,在对牺牲层10进行蚀刻的同时对下电极120进行蚀刻以在下电极120形成凹槽v1。换句话说,在本实施例中,下电极120具有多个凹槽v1,且下电极120的这些凹槽v1在第二方向d2(即第一方向d1的垂直方向)上重叠于对应的穿孔h。又换句话说,基板110与下电极120在第二方向d2上重叠于穿孔h的一部分在第一方向d1上的高度总和h1小于基板110与下电极120在第二方向d2上未重叠于穿孔h的另一部分在第一方向d1上的高度总和h2。意即,下电极120在第一方向d1上重叠穿孔h位置处的厚度较小于下电极120在第一方向d1上非重叠穿孔h位置处的厚度,且平行于空腔c的底部且未重叠于穿孔h的平面与在第二方向d2上重叠于穿孔h的下电极120的顶面s1非共平面。
请同时参考图1及图2f。接着,在上述步骤之后,配置多个封孔结构150于振荡元件130。这些封孔结构150分别沿第一方向d1延伸穿过对应的多个穿孔h。封孔结构150的材料为液态有机材料,例如是su-8光阻,但本发明并不限于此。封孔结构150的顶面s2为凸面,但本发明亦不限于此。详细而言,由于下电极120在第一方向d1上重叠穿孔h位置处具有凹槽v1,故当液态材料被提供至穿孔h后,液态材料将不会接触下电极120的表面,进而可避免液态材料因张力改变而渗入至振荡部132与下电极120之间的空腔c。因此,可对悬浮并充满于穿孔h处的液态材料进行干燥化以形成封孔结构150,进而完成制作电容式换能装置100。如此一来,相较于现有技术作法,本实施例的电容式换能装置100可不需对封孔结构150进行真空镀膜及蚀刻制程,进而可简化整体制作过程并减少制作成本。同时,由于节省了真空镀膜及蚀刻制程,故可避免板面翘曲以获得良好的测量质量。
详细而言,在本实施例中,蚀刻孔的孔径d与高度h3的比值小于7,其中蚀刻孔的高度h3即为振荡部132的厚度、空腔c的高度与凹槽v1的深度的总和。举例而言,在本实施例中,蚀刻孔的孔径d为6微米,且蚀刻孔的高度h3为9800埃,故可得蚀刻孔的孔径d与高度h3的比值约为6.1,而不产生液体渗入空腔c的情形。在另一实施例中,可设计蚀刻孔的孔径d为6微米,且蚀刻孔的高度h3为1.13微米,故可得蚀刻孔的孔径d与高度h3的比值约为5.3,而不产生液体渗入空腔c的情形。因此,当蚀刻孔的孔径d与高度h3的比值小于7时,可有效避免用以形成为封孔结构150的液态材料渗入空腔c。
在另一实施例中,可于下电极120上方额外配置绝缘层,用以保护下电极120。其中,上述下电极120中形成凹槽v1的做法亦可应用于绝缘层中,使得绝缘层上表面形成凹槽,从而使得蚀刻孔的孔径与高度的比值达到需求范围之内,故可有效避免用以形成为封孔结构的液态材料渗入空腔,本发明并不限于此。
图3为本发明另一实施例的电容式换能装置的剖面示意图。请参考图3。本实施例的电容式换能装置100a类似于图1所显示的电容式换能装置100。两者不同之处在于,在本实施例中,电容式换能装置100a还包括保护层152,配置以覆盖上电极140,其中保护层152与多个封孔结构150材料相同。具体而言,在本实施例中,可于配置多个封孔结构150于振荡元件130的步骤中,进一步提供液态材料并覆盖上电极140以形成保护层152。更进一步地,在本实施例中,液态材料可被提供以覆盖整体振荡元件130。在本实施例中,保护层152可选用与封孔结构150相同的材料,故可仅一道加工制程完成。如此一来,可简化配置封孔结构150的难易度。在本实施例中,保护层152覆盖振荡元件130,且保护层152的顶面s3为平面。如此一来,可进一步将电容式换能装置100a的顶面平坦化,以利后续加工制程,但本发明并不限于此。
图4为本发明另一实施例的电容式换能装置的剖面示意图。请参考图4。本实施例的电容式换能装置100b类似于图1所显示的电容式换能装置100。两者不同之处在于,在本实施例中,可进一步将下电极120a的厚度设计较大。如此一来,可进一步增加下电极120a的凹槽v1深度,进而缩小蚀刻孔的孔径与高度比值,从而避免在制作封孔结构150时液体材料渗入空腔c。此外,还可进一步薄化基板110的厚度。
图5为本发明另一实施例的电容式换能装置的剖面示意图。请参考图5。本实施例的电容式换能装置100c类似于图1所显示的电容式换能装置100。两者不同之处在于,在本实施例中,下电极120b具有多个挖空处g,而基板110暴露于这些挖空处g,且多个挖空处g在第二方向d2上重叠于多个穿孔h。如此一来,可进一步增加蚀刻孔深度,进而缩小蚀刻孔的孔径与高度比值,从而避免在制作封孔结构150时液体材料渗入空腔c。
图6为本发明另一实施例的电容式换能装置的剖面示意图。请参考图6。本实施例的电容式换能装置100d类似于图5所显示的电容式换能装置100c。两者不同之处在于,在本实施例中,基板110a具有多个凹槽v2,且基板110a的凹槽v2在第二方向d2上重叠于多个挖空处g。本实施例形成基板110a的凹槽v2的方式可参酌形成下电极的凹槽的方式,于此不再赘述。如此一来,可进一步增加蚀刻孔深度,进而缩小蚀刻孔的孔径与高度比值,从而避免在制作封孔结构150时液体材料渗入空腔c。此外,还可进一步薄化下电极120b的厚度。
图7为本发明一实施例的电容式换能装置的制造方法流程图。请同时参考图2a至图2f以及图7。在本实施例中,首先,执行步骤s200,依序提供基板110、下电极120以及牺牲层10。接着,在上述步骤之后,执行步骤s201,依序配置振荡元件130以及上电极140至下电极120并覆盖牺牲层10。接着,在上述步骤之后,执行步骤s202,在振荡元件130上形成多个穿孔h并移除牺牲层10以形成空腔c。接着,在上述步骤之后,执行步骤s203,移除一部分在第一方向d1上重叠于多个穿孔h的下电极120,其中第一方向d1垂直于基板110的延伸方向,第二方向d2垂直于第一方向d1。最后,在上述步骤之后,执行步骤s204,提供液态材料至多个穿孔h以形成多个封孔结构150,其中多个封孔结构150分别沿第一方向d1延伸穿过多个穿孔h,且基板110与下电极120在第二方向d2上重叠于多个穿孔h的一部分在第一方向d1上的高度总和h1小于基板110与下电极120在第二方向d2上未重叠于多个穿孔h2的另一部分在第一方向d1上的高度总和h2。如此一来,可不需对封孔结构150进行真空镀膜及蚀刻制程,进而可简化整体制作过程并减少制作成本。同时,可避免因镀膜所产生的板面翘曲以获得良好的测量质量。
综上所述,在本发明的电容式换能装置中,振荡元件用以作为振荡部,基板与下电极在水平方向上重叠于穿孔的一部分的高度总和小于基板与下电极在水平方向上未重叠于穿孔的另一部分的高度总和。因此,配置于穿孔中的封孔结构可用使用液态材料制作而成。如此一来,可不需对封孔结构进行真空镀膜及蚀刻制程,进而可简化整体制作过程并减少制作成本。同时,可避免因镀膜所产生的板面翘曲以获得良好的测量质量。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
本文地址:https://www.jishuxx.com/zhuanli/20240726/122529.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 YYfuon@163.com 举报,一经查实,本站将立刻删除。
下一篇
返回列表