具有真空隔热层的MEMS微热板及其制备方法与流程
- 国知局
- 2024-07-27 12:41:47
具有真空隔热层的mems微热板及其制备方法技术领域1.本公开涉及微纳制造技术及微电子机械系统(mems)传感器技术领域,特别涉及一种具有真空隔热层的mems微热板及其制备方法。背景技术:2.目前采用气体传感器对有毒有害、可燃气体泄漏的微量准确检测,能够有效预防安全事故的发生,因此气体传感器的研究和开发至关重要。3.金属氧化物气体传感器由于具有灵敏度高、响应迅速、成本低等优点被广泛应用于石油化工、冶金工业、环境监测等众多领域,但其仍存在体积大、功耗高和选择性差等问题。mems技术的发展成功推动气体传感器实现了小型化,而低功耗、高选择性的多气体传感器已成为高端mems气体传感器的研究热点。4.mems气体传感器主要由气敏材料和微热板两部分组成。微热板是mems气体传感器的核心部件,其集成加热电极和测试电极一体于硅基板,能够有效降低传统金属氧化物气体传感器的功耗,作为重要组成部分的微热板,其设计与加工的好坏直接影响mems气体传感器的性能。5.目前mems气体传感器的微热板普遍采用悬空结构制备隔热槽来实现保温的目的,但仍存在微热板上温度分布不均匀和热量散失损耗等问题。为了解决温度分布不均匀和热量散失损耗的问题,现有技术提供了一种基于空气隔热层的mems微热板及其制备方法,通过采用空气隔热层,降低了热量散失,改善了微热板上温度分布的均匀性。但是上述方法为制作空气隔热层而增加了工艺步骤,导致制备工艺复杂,制备难度同时加大,制备成本也相应提升,并且空气本身具有良好的导热能力,空气隔热层在一定程度仍存在热量散失损耗的问题。技术实现要素:6.(一)要解决的技术问题7.有鉴于此,本公开的主要目的在于提供一种具有真空隔热层的mems微热板及其制备方法,以至少部分解决上述技术问题。8.(二)技术方案9.根据本公开的一个方面,提供了一种具有真空隔热层的mems微热板,包括:硅基底100;在所述硅基底100表面通过空洞层上硅(silicon on nothing,son)工艺形成的真空隔热层203;形成于所述硅基底100及所述真空隔热层203之上的绝缘层301;形成于所述绝缘层301上且位于所述真空隔热层203正上方的加热电极401和测试电极402;沿所述真空隔热层203外围依次刻蚀所述绝缘层301和所述硅基底100形成的具有悬空梁支撑结构502的加热平台501;以及刻蚀或腐蚀所述绝缘层301于所述加热平台501正下方区域形成的隔热槽601。10.在一些实施例中,所述硅基底100采用电阻率≤0.001ω·cm,晶向《100》的单晶硅圆片或soi圆片,厚度至少为300μm。11.在一些实施例中,所述真空隔热层203的上表面低于所述硅基底100的上表面,以于所述真空隔热层203的上表面形成便于气敏材料成型的一凹槽结构201。12.在一些实施例中,所述绝缘层301采用的材料为sio2,同时起到绝热作用,厚度为0.5μm~1μm。所述绝缘层301是采用热氧化技术氧化所述真空隔热层203的硅膜结构及所述硅基底100的上表面而形成。在氧化所述真空隔热层203的硅膜结构及所述硅基底100的上表面而形成的sio2之上,进一步包括si3n4层而形成复合材料层。13.在一些实施例中,所述加热电极401和所述测试电极402位于同一层,所述测试电极402被所述加热电极401所包围。14.在一些实施例中,所述加热电极401和所述测试电极402位于不同层,所述加热电极401位于所述测试电极402之下,且所述加热电极401与所述测试电极402之间间隔有第二绝缘层。15.在一些实施例中,所述加热电极401和所述测试电极402均采用金属pt,厚度均为100nm~300nm。所述测试电极402采用对称梳状叉指电极结构。16.在一些实施例中,所述加热平台501采用正方体结构或圆柱体结构。所述真空隔热层203是具有一空腔的结构,所述空腔的形状对应于所述加热平台501,采用正方体或圆柱体。17.根据本公开的另一个方面,提供了一种具有真空隔热层的mems微热板的制备方法,包括:提供一硅基底;对所述硅基底表面进行刻蚀并采用son工艺形成真空隔热层;在所述硅基底及所述真空隔热层之上形成绝缘层;在所述绝缘层上且位于所述真空隔热层正上方形成加热电极和测试电极;沿所述真空隔热层外围依次刻蚀所述绝缘层和所述硅基底形成具有悬空梁支撑结构的加热平台;以及刻蚀或腐蚀所述绝缘层于所述加热平台正下方区域形成隔热槽。18.在一些实施例中,所述对所述硅基底表面进行刻蚀并采用son工艺形成真空隔热层,包括:在所述硅基底表面利用光刻胶或sio2作为掩膜,采用深反应离子刻蚀工艺在所述硅基底表面刻蚀出宽度相等、间距一致的深沟槽阵列;采用退火工艺对上述具有深沟槽阵列的硅基底进行热处理,深沟槽阵列中的各深沟槽下端慢慢封闭并形成多个真空腔体,深沟槽上端形成完整的硅膜结构,且该硅膜结构上表面略低于硅晶圆上表面,自发形成一凹槽结构,该硅膜结构下各真空腔体逐步合并,最终所有真空腔体连通为一体形成真空隔热层。19.在一些实施例中,所述在所述硅基底及所述真空隔热层之上形成绝缘层,包括:采用热氧化技术氧化所述硅基底的上表面及所述真空隔热层的硅膜结构,形成绝缘层;或在所述硅基底的上表面及所述真空隔热层的硅膜结构之上沉积一层sio2,形成绝缘层。20.在一些实施例中,所述在所述绝缘层上且位于所述真空隔热层正上方形成加热电极和测试电极,包括:采用电子束蒸发或溅射技术在所述绝缘层上形成金属pt薄膜;采用光刻腐蚀或剥离法对所述金属pt薄膜进行处理,在所述绝缘层上且位于所述真空隔热层正上方同时形成加热电极和测试电极。21.在一些实施例中,所述在所述绝缘层上且位于所述真空隔热层正上方形成加热电极和测试电极,包括:采用电子束蒸发或溅射技术在所述绝缘层上形成金属pt薄膜;采用光刻腐蚀或剥离法对所述金属pt薄膜进行处理,在所述绝缘层上且位于所述真空隔热层正上方形成加热电极;在形成加热电极的绝缘层之上沉积一层sio2,形成第二绝缘层;采用电子束蒸发或溅射技术在所述第二绝缘层上形成金属pt薄膜;采用光刻腐蚀或剥离法对所述金属pt薄膜进行处理,在所述第二绝缘层上且位于所述加热电极正上方形成测试电极。22.在一些实施例中,所述沿所述真空隔热层外围依次刻蚀所述绝缘层和所述硅基底形成具有悬空梁支撑结构的加热平台,包括:利用光刻胶作掩膜沿所述真空隔热层外围刻蚀所述绝缘层至所述硅基底表面为止,或者采用湿法腐蚀法沿所述真空隔热层外围完全腐蚀所述绝缘层至所述硅基底表面为止;采用反应离子刻蚀方法,刻蚀所述硅基底,刻蚀深度为5μm~15μm,形成具有悬空梁支撑结构的加热平台。23.在一些实施例中,所述刻蚀或腐蚀所述绝缘层于所述加热平台正下方区域形成隔热槽,包括:采用反应离子刻蚀方法刻蚀所述绝缘层或采用湿法腐蚀方法腐蚀所述绝缘层,在所述加热平台正下方区域形成隔热槽,深度为285μm~295μm。24.根据本公开的再一个方面,提供了一种mems气体传感器,包括所述的具有真空隔热层的mems微热板。25.(三)有益效果26.从上述技术方案可以看出,本公开提供的具有真空隔热层的mems微热板及其制备方法,至少具有以下有益效果:27.1、利用本公开,通过采用空洞层上硅(silicon on nothing,son)工艺能够使隔热层处于真空状态,形成真空隔热层,该真空隔热层相较于空气隔热在抑制加热平台热量散失方面更具优势,能够有效降低微热板工作时向外界的热传导,从而降低热量损失,进而提升微热板的温度均匀性。28.2、利用本公开,在真空隔热层制作过程中自发形成有一凹槽结构,相较于平整平面结构,该凹槽结构将薄膜类气敏材料保留在凹槽内,使气敏材料更易于均匀地涂覆在测量区域内。29.3、利用本公开,采用的制备工艺无需生长、刻蚀多晶硅作为牺牲层来形成隔热层,有效地减少了微热板制备的步骤,降低了微热板的工艺实现难度,大大降低了制作成本。30.4、利用本公开,利用son工艺过程相对简易的优势,实现了在硅基底上真空隔热结构的制备,同时形成便于气敏材料成型的凹糟结构,制备工艺简单,较好地解决了微热板上温度分布不均匀和热量散失损耗等问题。附图说明31.通过以下参照附图对本公开实施例的描述,本公开的上述以及其他目的、特征和优点将更为清楚,在附图中:32.图1a为依照本公开一个实施例的具有真空隔热层的mems微热板的俯视图;33.图1b为沿图1a中aa’线的剖视图;34.图2a为依照本公开另一个实施例的具有真空隔热层的mems微热板的俯视图;35.图2b为沿图2a中bb’线的剖视图;36.图3为本公开提供的制备具有真空隔热层的mems微热板的方法流程图;37.图4a至图4f为依照本公开一个实施例的制备具有真空隔热层的mems微热板的工艺流程图;38.图5a至图5h为依照本公开另一个实施例的制备具有真空隔热层的mems微热板的工艺流程图;39.图6为依照本公开实施例的包括图1a所示具有真空隔热层的mems微热板的mems气体传感器的结构示意图;40.图7为依照本公开实施例的包括图2a所示具有真空隔热层的mems微热板的mems气体传感器的结构示意图。41.【附图标记说明】42.100硅基底;101深沟槽阵列;43.201凹槽结构;202硅膜结构;203真空隔热层;44.301绝缘层;302第二绝缘层;45.401加热电极;402测试电极;46.501加热平台;502悬空梁支撑结构;47.601隔热槽;48.701气敏材料。具体实施方式49.以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本公开实施例的全面理解。然而,明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。50.在此使用的所有术语(包括技术和科学术语)具有本领域技术人员通常所理解的含义,除非另外定义。应注意,这里使用的术语应解释为具有与本说明书的上下文相一致的含义,而不应以理想化或过于刻板的方式来解释。51.并且图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本公开实施例的内容。另外,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。52.再者,单词“包括”或“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”并不排除存在多个这样的元件。53.本公开通过采用son工艺提供了一种具有真空隔热层的mems微热板,该mems微热板包括:硅基底100;在所述硅基底100表面通过son工艺形成的真空隔热层203;形成于所述硅基底100及所述真空隔热层203之上的绝缘层301;形成于所述绝缘层301上且位于所述真空隔热层203正上方的加热电极401和测试电极402;沿所述真空隔热层203外围依次刻蚀所述绝缘层301和所述硅基底100形成的具有悬空梁支撑结构502的加热平台501;以及刻蚀或腐蚀所述绝缘层301于所述加热平台501正下方区域形成的隔热槽601。54.在本公开的实施例中,所述加热电极401和所述测试电极402可以位于同一层,也可以位于不同层。当所述加热电极401和所述测试电极402位于同一层时,如图1a和图1b所示,加热电极401处于外侧,测试电极402处于内侧,呈包围状态,即测试电极402被加热电极401所包围。当所述加热电极401和所述测试电极402位于不同层时,如图2a和图2b所示,加热电极401位于测试电极402之下,且加热电极401与测试电极402之间间隔有第二绝缘层302。55.在本公开的一个示例性实施例中,图1a和图1b以加热电极401和测试电极402位于同一层为例,对本公开提供的具有真空隔热层的mems微热板进行详细说明,其中,图1a为依照本公开一个实施例的具有真空隔热层的mems微热板的结构示意图,图1b为沿图1a中aa’线的剖视图。56.如图1a和图1b所示,从整体上看,本公开实施例提供的具有真空隔热层的mems微热板,包括:硅基底100;在所述硅基底100表面通过son工艺形成的真空隔热层203;形成于所述硅基底100及所述真空隔热层203之上的绝缘层301;形成于所述绝缘层301上且位于所述真空隔热层203正上方的加热电极401和测试电极402,所述测试电极402被所述加热电极401所包围;沿所述真空隔热层203外围依次刻蚀所述绝缘层301和所述硅基底100形成的具有悬空梁支撑结构的加热平台501;以及刻蚀或腐蚀所述绝缘层301于所述加热平台501正下方区域形成的隔热槽601。57.根据本公开的实施例,如图1a和图1b所示,所述硅基底100采用电阻率≤0.001ω·cm,晶向《100》的单晶硅圆片或soi圆片,所述硅基底100为双表面抛光,厚度至少为300μm。58.根据本公开的实施例,如图1a和图1b所示,所述真空隔热层203的上表面低于所述硅基底100的上表面,以于所述真空隔热层203的上表面形成便于气敏材料成型的一凹槽结构201。该真空隔热层相较于空气隔热在抑制加热平台热量散失方面更具优势,能够有效降低微热板工作时向外界的热传导,从而降低热量损失,进而提升微热板的温度均匀性。在真空隔热层制作过程中自发形成的该凹槽结构,相较于平整平面结构,能够将薄膜类气敏材料保留在该凹槽结构内,使得气敏材料更易于均匀地涂覆于测量区域内。59.根据本公开的实施例,如图1a和图1b所示,所述绝缘层301采用的材料为sio2,同时起到绝热作用,厚度为0.5μm~1μm。所述绝缘层301是采用热氧化技术氧化所述真空隔热层203的硅膜结构及所述硅基底100的上表面而形成。在氧化所述真空隔热层203的硅膜结构及所述硅基底100的上表面而形成的sio2之上,还可以进一步包括si3n4层而形成复合材料层。60.根据本公开的实施例,如图1a和图1b所示,所述加热电极401和所述测试电极402位于真空隔热层203正上方,且位于同一平面内,加热电极401处于外侧,测试电极402处于内侧,呈包围状态。所述测试电极402采用对称梳状叉指电极结构,所述加热电极401和所述测试电极402均采用金属pt,通过电子束蒸发或溅射等方式形成金属pt薄膜,厚度均为100nm~300nm。在实际应用中,除金属pt外,根据mems微热板工作温度的需求,也可以采用其他的材料,通过光刻腐蚀或剥离法完成加热电极和测试电极的制作。61.根据本公开的实施例,如图1a和图1b所示,所述加热平台501可以采用正方体结构或圆柱体结构,而所述真空隔热层203是具有一空腔的结构,所述空腔的形状对应于所述加热平台501,采用正方体或圆柱体。62.在本公开的另一个示例性实施例中,图2a和图2b以加热电极401和测试电极402位于不同层为例,对本公开提供的具有真空隔热层的mems微热板进行详细说明,其中,图2a为依照本公开另一个实施例的具有真空隔热层的mems微热板的结构示意图,图2b为沿图2a中bb’线的剖视图。63.如图2a和图2b所示,从整体上看,本公开实施例提供的具有真空隔热层的mems微热板与图1a和图1b所示的具有真空隔热层的mems微热板在结构上基本相同,其区别之处在于,图2a和图2b所示的具有真空隔热层的mems微热板加热电极401和测试电极402位于不同层,加热电极401位于真空隔热层203正上方,测试电极402位于加热电极401之上,且加热电极401与测试电极402之间间隔有第二绝缘层302。64.基于图1a、图1b、图2a和图2b所示的具有真空隔热层的mems微热板的结构示意图,图3示出了本公开提供的制备具有真空隔热层的mems微热板的方法流程图,图4a至图4f为依照本公开一个实施例的制备具有真空隔热层的mems微热板的工艺流程图,图5a至图5h为依照本公开另一个实施例的制备具有真空隔热层的mems微热板的工艺流程图,该方法包括以下步骤:65.步骤301:提供一硅基底;66.在本步骤中,可选用硅基底100为双表面抛光,晶向《100》,电阻率≤0.001ω·cm的单晶硅圆片,也可以选用双表面抛光的soi圆片,厚度均为300μm。67.步骤302:对所述硅基底100表面进行刻蚀并采用son工艺形成真空隔热层,具体包括:68.在所述硅基底100表面利用光刻胶或sio2作为掩膜,采用深反应离子刻蚀工艺在所述硅基底表面刻蚀出宽度相等、间距一致的深沟槽阵列101,该深沟槽阵列101包括有多个深沟槽;如图4a和图5a所示,图4a为依照本公开一个实施例的对硅基底表面进行刻蚀形成深沟槽阵列的示意图,图5a为依照本公开另一个实施例的对硅基底表面进行刻蚀形成深沟槽阵列的示意图。69.接着,采用退火工艺对上述具有深沟槽阵列101的硅基底100进行热处理,深沟槽阵列101中的各深沟槽下端慢慢封闭并形成多个真空腔体,深沟槽上端形成完整的硅膜结构202,且该硅膜结构202上表面略低于硅晶圆上表面,自发形成一凹槽结构201,该硅膜结构202下各真空腔体逐步合并,最终所有真空腔体连通为一体,形成真空隔热层203。如图4b和图5b所示,图4b为依照本公开一个实施例的形成真空隔热层的示意图,图5b为依照本公开另一个实施例的形成真空隔热层的示意图。70.步骤303:在所述硅基底100及所述真空隔热层203之上形成绝缘层301;71.在本步骤中,可以采用热氧化技术氧化所述硅基底100的上表面及所述真空隔热层203的硅膜结构202,形成绝缘层301;也可以在所述硅基底100的上表面及所述真空隔热层203的硅膜结构202之上沉积一层sio2,形成绝缘层301。如图4c和图5c所示,图4c为依照本公开一个实施例的形成绝缘层的示意图,图5c为依照本公开另一个实施例的形成绝缘层的示意图。72.所述绝缘层301同时起到绝热作用,厚度为0.5μm~1μm。在所述sio2之上,还可以进一步包括si3n4层而形成复合材料层。73.步骤304:在所述绝缘层301上且位于所述真空隔热层203正上方形成加热电极401和测试电极402;74.在本步骤中,所述加热电极401和所述测试电极402可以位于同一层,也可以位于不同层。当所述加热电极401和所述测试电极402位于同一层时,如图4d所示,图4d为依照本公开一个实施例的形成加热电极和测试电极的示意图。采用电子束蒸发或溅射技术在所述绝缘层301上形成金属pt薄膜;采用光刻腐蚀或剥离法对所述金属pt薄膜进行处理,在所述绝缘层301上且位于所述真空隔热层203正上方同时形成加热电极401和测试电极402。加热电极401和测试电极402位于真空隔热层203的正上方,且位于同一平面内,加热电极401处于外侧,测试电极402处于内侧,呈包围状态。75.当所述加热电极401和所述测试电极402位于不同层时,如图5d所示,采用电子束蒸发或溅射技术在所述绝缘层301上形成金属pt薄膜;采用光刻腐蚀或剥离法对所述金属pt薄膜进行处理,在所述绝缘层301上且位于所述真空隔热层203正上方形成加热电极401。如图5e所示,在形成加热电极401的绝缘层301之上沉积一层sio2,形成第二绝缘层302。如图5f所示,采用电子束蒸发或溅射技术在所述第二绝缘层302上形成金属pt薄膜;采用光刻腐蚀或剥离法对所述金属pt薄膜进行处理,在所述第二绝缘层302上且位于所述加热电极401正上方形成测试电极402。76.测试电极402采用对称梳状叉指电极结构,加热电极401和测试电极402均采用金属pt,通过电子束蒸发或溅射等方式形成金属pt薄膜,厚度均为100nm~300nm。在实际应用中,除金属pt外,根据mems微热板工作温度的需求,也可以采用其他的材料,通过光刻腐蚀或剥离法完成加热电极和测试电极的制作。77.步骤305:沿所述真空隔热层203外围依次刻蚀所述绝缘层和所述硅基底形成具有悬空梁支撑结构502的加热平台501;78.在本步骤中,如图4e所示,图4e为依照本公开一个实施例的形成具有悬空梁支撑结构的加热平台的示意图。利用光刻胶作掩膜沿所述真空隔热层203外围刻蚀所述绝缘层301至所述硅基底100表面为止,或者采用湿法腐蚀法沿所述真空隔热层203外围完全腐蚀所述绝缘层301至所述硅基底100表面为止;接着采用反应离子刻蚀方法,刻蚀所述硅基底100,刻蚀深度为5μm~15μm,形成具有悬空梁支撑结构502的加热平台501。79.如图5g所示,图5g为依照本公开另一个实施例的形成具有悬空梁支撑结构的加热平台的示意图。利用光刻胶作掩膜沿所述真空隔热层203外围依次刻蚀所述第二绝缘层302和所述绝缘层301至所述硅基底100表面为止,或者采用湿法腐蚀法沿所述真空隔热层203外围完全腐蚀所述第二绝缘层302和所述绝缘层301至所述硅基底100表面为止;接着采用反应离子刻蚀方法,刻蚀所述硅基底100,刻蚀深度为5μm~15μm,形成具有悬空梁支撑结构502的加热平台501。80.步骤306:刻蚀或腐蚀所述绝缘层于所述加热平台正下方区域形成隔热槽。81.在本步骤中,如图4f所示,图4f为依照本公开一个实施例的形成隔热槽的示意图。采用反应离子刻蚀方法刻蚀所述绝缘层301或采用湿法腐蚀方法腐蚀所述绝缘层301,在所述加热平台501正下方区域形成隔热槽601,深度为285μm~295μm。82.如图5h所示,图5h为依照本公开另一个实施例的形成隔热槽的示意图。采用反应离子刻蚀方法刻蚀所述第二绝缘层302和所述绝缘层301或采用湿法腐蚀方法腐蚀所述第二绝缘层302和所述绝缘层301,在所述加热平台501正下方区域形成隔热槽601,深度为285μm~295μm。83.隔热槽601形成后,即最终完成整个mems微热板的制作。84.基于图1a所示的依照本公开一个实施例的具有真空隔热层的mems微热板的结构示意图,以及图1b所示的沿图1a中aa’线的剖视图,图6示出了依照本公开实施例的包括图1a所示具有真空隔热层的mems微热板的mems气体传感器的结构示意图。85.基于图2a所示的依照本公开另一个实施例的具有真空隔热层的mems微热板的结构示意图,以及图2b所示的沿图2a中bb’线的剖视图,图7示出了依照本公开实施例的包括图2a所示具有真空隔热层的mems微热板的mems气体传感器的结构示意图。86.如图6和图7所示,该mems气体传感器包括本公开实施例的具有真空隔热层的mems微热板,以及均匀地涂覆于该mems微热板的真空隔热层上凹槽结构的气敏材料701。对于该mems气体传感器而言,该真空隔热层相较于空气隔热在抑制加热平台热量散失方面更具优势,能够有效降低微热板工作时向外界的热传导,从而降低热量损失,进而提升微热板的温度均匀性;该凹槽结构相较于平整平面结构更有利于薄膜类气敏材料保留在凹槽内,使气敏材料更易于均匀地涂覆在测量区域内,较好地解决了微热板上温度分布不均匀和热量散失损耗等问题。87.至此,已经结合附图对本公开实施例进行了详细描述。需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。88.依据以上描述,本领域技术人员应当对本公开提供的具有真空隔热层的mems微热板及其制备方法有了清楚的认识。89.综上所述,本公开提供的具有真空隔热层的mems微热板及其制备方法,通过采用son工艺能够使隔热层处于真空状态,形成真空隔热层,该真空隔热层相较于空气隔热在抑制加热平台热量散失方面更具优势,能够有效降低微热板工作时向外界的热传导,从而降低热量损失,进而提升微热板的温度均匀性。在真空隔热层制作过程中自发形成有一凹槽结构,相较于平整平面结构,该凹槽结构将薄膜类气敏材料保留在凹槽内,使气敏材料更易于均匀地涂覆在测量区域内。采用的制备工艺无需生长、刻蚀多晶硅作为牺牲层来形成隔热层,有效地减少了微热板制备的步骤,降低了微热板的工艺实现难度,大大降低了制作成本。利用son工艺过程相对简易的优势,实现了在硅基底上真空隔热结构的制备,同时形成便于气敏材料成型的凹糟结构,制备工艺简单,较好地解决了微热板上温度分布不均匀和热量散失损耗等问题,有广阔的应用需求和市场前景。90.除非有所知名为相反之意,本说明书及所附权利要求中的数值参数是近似值,能够根据通过本公开的内容所得的所需特性改变。具体而言,所有使用于说明书及权利要求中表示组成的含量、反应条件等等的数字,应理解为在所有情况中是受到「约」的用语所修饰。一般情况下,其表达的含义是指包含由特定数量在一些实施例中±10%的变化、在一些实施例中±5%的变化、在一些实施例中±1%的变化、在一些实施例中±0.5%的变化。91.说明书与权利要求中所使用的序数例如“步骤301”、“步骤302”、“步骤303”等的用词,以修饰相应的元件,其本身并不意味着该元件有任何的序数,也不代表某一元件与另一元件的顺序、或是制造方法上的顺序,该些序数的使用仅用来使具有某命名的一元件得以和另一具有相同命名的元件能做出清楚区分。92.类似地,应当理解,为了精简本公开并帮助理解各个公开方面中的一个或多个,在上面对本公开的示例性实施例的描述中,本公开的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本公开要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,公开方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本公开的单独实施例。93.以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
本文地址:https://www.jishuxx.com/zhuanli/20240726/123078.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 YYfuon@163.com 举报,一经查实,本站将立刻删除。
下一篇
返回列表