结合有包括机电装置的致动器的时计的制作方法
- 国知局
- 2024-07-30 09:38:26
1.本发明涉及一种结合有致动器的时计,致动器由机电装置形成,机电装置包括由永磁体和线圈形成的电磁系统。机电装置包括机械元件,当电磁系统被电控制电路激活时,该机械元件可以在静止位置和与时计的预定部分接触的接触位置之间移动。2.根据本发明的致动器尤其可以用于实现机械制动脉冲,这些机械制动脉冲被施加到机械谐振器,特别是被施加到形成这种机械谐振器的摆轮游丝的摆轮,以调节其平均频率或者校正时计运行中所检测到的时间漂移。背景技术:3.例如,在专利申请wo 2018/177779中结合图4对以上给出的类型的致动器进行了描述。致动器包括由线圈-磁体电磁系统致动的柔性叶片。这种致动器的一个问题来自于以下事实:在不向线圈供电的情况下,柔性叶片会容易从静止位置发生并不期望的移动,这种移动是在冲击的情况下或者甚至由结合有该致动器的时计的托架前臂的移动所造成的相对小的加速度所导致的。这些移动会产生寄生制动脉冲,这些寄生制动脉冲被施加到摆轮游丝上且从而干扰摆轮游丝的操作,且尤其干扰所提供的对摆轮游丝的平均频率的调节。在受到冲击或在时计使用者突然移动后,柔性叶片甚至可以摆动(oscillate)并产生一系列寄生制动脉冲。4.实际上,尽管在电磁系统未激活的情况下柔性叶片向静止位置机械地返回(如在根据命令产生制动脉冲之间所设置的那样(电磁系统的激活仅在制动脉冲产生期间被提供,以限制致动器的电力消耗)),该机械返回力在静止位置附近是弱的。已知,弹力随着柔性叶片距其静止位置的距离而线性地增加。因此,该柔性叶片容易振动且会容易出现不期望的移动,移动的幅度足以使柔性叶片接触摆轮。技术实现要素:5.本发明的目的是通过提供一种结合有致动器的时计来克服技术背景中所出现的技术问题,对于该致动器,由电磁系统致动的柔性构件的静止位置是更加稳定的,从而在用户将时计佩戴在手腕上时该时计经受加速的情况下防止或至少减少该柔性构件的不期望的移动的风险,该移动的幅度使得致动器能够在时计的确定部分上(特别是在机械谐振器的摆轮上)会产生寄生脉冲。6.为了实现上述目的,本发明涉及一种时计,该时计结合有致动器,该致动器由机电装置和电控制电路形成,该机电装置包括电磁系统和机械元件,机械元件是可平移移动的并且与电磁系统相关联。电磁系统由永磁体和线圈形成,永磁体和线圈中的一者由机电装置的柔性构件承载,且另一者由该柔性构件的支撑件承载。机械元件是柔性构件的一部分,并且致动器被布置成:响应于由电控制电路产生并且被提供给线圈以在该线圈和永磁体之间产生电磁力的电激活信号,允许机械元件从静止位置移动到与时计的确定部分接触的接触位置,预设的是:在未激活电磁系统的情况下,机械元件保持在该静止位置中。然后,柔性构件至少部分地由弹性元件形成,该弹性元件被布置成:在电控制电路产生所述电激活信号时,在静止位置和接触位置之间,在机械元件能够行进的距离的至少大部分上产生机械元件的沿静止位置的方向的机械返回力,该接触位置终止所述距离的所述至少大部分。此外,致动器还包括磁元件,该磁元件被布置成能够与永磁体相互作用,以在磁元件和永磁体之间产生磁力,当机械元件处于静止位置时,该磁力施加在机械元件上,在从静止位置起的所述距离的至少初始部分上,该磁力具有与电磁力的方向相反的方向,并且当机械元件从静止位置移开时,该磁力具有在所述至少初始部分上减小的强度,就机械元件在所述至少初始部分中的任何位置而言,该强度小于电磁力具有的强度。7.通过在根据本发明的致动器中布置附加的磁元件,柔性构件的静止位置变得更加稳定,从而在未向线圈提供电激活信号的情况下,可平移移动的机械元件通常保持在该静止位置中。因此,在不存在电激活信号的情况下,磁元件和时计的确定部分之间接触的风险大大降低。特别地,所述确定部分是形成时计所包括的机械机构的机械摆动器(oscillator)的摆轮。附图说明8.下面将使用附图以详细的方式描述本发明,附图是作为绝非限制性的示例给出的,其中:‑ꢀ图1是根据本发明的手表的第一实施例的第一替代方案的透视图,其中底部打开且摆动锤被移除;‑ꢀ图2是图1的局部放大图;‑ꢀ图3a和3b是分别处于机电装置柔性构件的静止位置中和与手表摆轮接触的接触位置中的被结合在图1手表中的致动器的该机电装置的线性表示;‑ꢀ图4a和4b是根据第一实施例的机电装置的第二替代方案的线性表示(与图3a和3b的线性表示类似);‑ꢀ图5a和5b示出了,针对作用在图4a和4b中所示的第二替代方案的机电装置中的各种力,随机械元件的基于轴线z的移动的变化而变化的力的曲线;‑ꢀ图6给出了一条曲线,该曲线示出了机械元件在所施加到手表摆轮的制动脉冲期间的动力学特性;‑ꢀ图7示出了形成第一实施例的电磁系统的呈实心圆盘形状的永磁体的磁场线;‑ꢀ图8a和8b是根据本发明的手表的机电装置的第二实施例的线性表示(与图3a和3b的线性表示类似);‑ꢀ图8c是图8a的局部放大图;‑ꢀ图9a、9b和9c涉及根据本发明的手表的第三实施例,并且是与图8a至8c的表示类似的表示;‑ꢀ图10a和10b是分别针对由该机电装置形成的机械元件的两个不同位置的第三实施例的机电装置的局部表示;‑ꢀ图11a和11b示出了,针对作用在第三实施例的机电装置中的各种力,随磁元件的基于轴线z的移动的变化而变化的力的曲线,该磁元件用于稳定形成第三实施例的机电装置的柔性构件的静止位置;‑ꢀ图12a、12b和12c涉及根据本发明的手表的第四实施例,并且是与图9a至9c的表示类似的表示;‑ꢀ图13a和13b示出了,针对作用在第三实施例的机电装置中的各种力,随磁元件的基于轴线z的移动的变化而变化的力的曲线,该磁元件用于稳定形成第四实施例的机电装置的柔性构件的静止位置。具体实施方式9.下面将参照图1至图6描述根据本发明的时计的第一实施例。10.图1至图3b示出了第一替代方案。在图1和图2中示出(没有表壳底部且没有机械机芯4的摆动锤)的手表2结合有由机电装置6和电控制电路8形成的致动器。机电装置包括电磁系统10和机械元件22,机械元件22可沿轴线z平移移动,并且是与电磁系统相关联的。电磁系统10由永磁体12和线圈14形成,线圈14由柔性构件16承载,形成机电装置,而永磁体由该柔性构件的支撑件18承载。注意,在图2中,支撑件的部分(柔性构件16经由两个螺钉紧固到支撑件的该部分)已经被移除以使永磁体可见。11.柔性构件16至少部分地由弹性元件20形成。该柔性构件包括机械元件22,机械元件22可以是该弹性元件的一部分或者被紧固到该弹性元件。弹性元件20被布置成:在电控制电路产生电激活信号时,在柔性构件的静止位置(由图3a中的位置z = 0.0所限定)和与机械机芯4的机械谐振器摆轮轮缘24接触的接触位置之间,在机械元件22基于轴线z能够行进的距离的至少大部分上产生该机械元件22的朝柔性构件的静止位置的方向的机械返回力,该接触位置终止所述距离的所述至少大部分。对于机械元件22,接触位置基本上对应于距离z = 0.5mm。在所示的替代方案中,弹性元件有利地由弹性叶片20形成,该弹性叶片20折叠到自身上,从而对于给定体积的机电装置6而言增加弹性叶片的长度。12.柔性构件由紧固在支撑件18上的基部、弹性叶片20、位于弹性叶片的自由端部处的平盘21以及机械元件22形成,机械元件22与平盘形成一体,并经由肘形部件连接到平盘。应注意的是,机械元件22形成一种垫,允许通过该垫和轮缘24的底部之间的接触向该轮缘24施加机械制动脉冲。为此,机械元件22必须能够在轮缘24的内表面上施加一定的力,这是这里所描述的致动器所允许的。因此,机械元件22是柔性构件16的一部分,尽管机械元件22本身不必须是柔性的,但是它直接地或通过柔性构件的另一部分连接到弹性元件20的自由端部,以这样的方式,当弹性元件受到由电磁系统10所致的变形力时,机械元件22可以进行移动,如图3b所示。13.致动器被布置成:响应于由电控制电路8产生的电激活信号(该电激活信号通常为电脉冲形式并且被提供给线圈14以在该线圈和永磁体12之间产生电磁排斥力),允许机械元件22从静止位置(z = 0.0)移动到与摆轮轮缘24接触(且更一般地与时计的按照为致动器所提供的用途而确定的部分接触)的接触位置(z = 0.5 mm),预设的是:在电磁系统10未激活的情况下,所述机械元件保持在所述静止位置中。应当注意,在一个替代实施例中,其中机械元件的轴向位置和摆轮轮缘的轴向位置是颠倒的,并且其中,当电磁系统不工作且因此处于静止时,该电磁系统在永磁体和线圈之间具有自由空间,因此电磁力被提供作为吸引力以将机械元件从其静止位置致动到其接触位置。14.根据本发明, 致动器还包括磁元件,该磁元件相对于机械谐振器的摆轮的旋转轴线布置在固定位置中,并且布置成能够与永磁体12相互作用,以在磁元件和永磁体之间产生磁力,当机械元件22处于其静止位置时,该磁力施加在机械元件22上,并且在从静止位置到接触位置的距离的至少初始部分上,该磁力限定该机械元件朝向其静止位置的返回力。在一种特定情况中,其中致动器被设置成两个不同部分,两个不同部分中的结合有线圈的那一个部分是可移除的,当致动器处于允许致动线圈的功能构型中时,磁元件相对于线圈具有稳定的位置。在所示的特定替代方案中,磁元件26刚性连接到线圈14。15.在从静止位置到接触位置的距离的至少初始部分上,磁力具有与向线圈14供电期间在电磁系统10中产生的电磁力的方向相反的方向。然后,当机械元件22从静止位置移开时,磁力具有在所述至少初始部分上减小的强度,并且就机械元件在所述至少初始部分中的任何位置而言,该强度小于电磁排斥力的强度。如图3a所示,当机械元件22处于静止位置时,磁元件26在永磁体12的中心轴线上对齐。在这里描述的第一实施例的第一替代方案中,磁元件由元件26形成,元件26由铁磁材料组成,下文中称元件26为铁磁元件。16.在这里描述的第一实施例中,永磁体12具有盘的形状,更一般地是实心的、扁平的、圆形的形状。同样,磁元件26具有盘的形状,一般为实心的、扁平的、圆形的形状。17.在未激活电磁系统的情况下,所提供的磁力对于将柔性构件16以及因此的机械元件22稳定在静止位置中是非常有效的。磁元件26以这样的方式布置,即当机械元件移动靠近静止位置时,磁元件26施加强度增加的力(与柔性构件的弹性力相反)。因此,在没有供电的情况下,柔性构件受到磁力的作用,该磁力倾向于将柔性构件保持在其静止位置,并且,在暂时地可以移动柔性构件离开静止位置的外部干扰情况下,该磁力倾向于通过限制机械元件22的移离以及限制在这种移离之后柔性构件会具有的可能的回弹幅度,而强有力地使柔性构件朝该静止位置返回。事实上,当机械元件22处于静止位置中以及靠近静止位置时,磁力是相对大的。这将在下面第二替代方案的描述中更精确地看到。18.图4a和4b示出了第一实施例的第二替代方案。该替代方案与第一替代方案的不同之处在于:机电装置6a的电磁系统10a的空间颠倒。因此,永磁体12在弹性叶片20的自由端部侧被弹性叶片20承载,而线圈14紧固到支撑件18上,磁元件26布置在线圈的内部空间中。该第二替代方案的一个优点在于:当电磁系统10a被激活时,线圈既不移动也不撞击到摆轮的轮缘24。这允许不对将线圈电连接到电控制电路的电连接件施加应力,且由此避免这些连接件破裂。然而,由于永磁体是由柔性构件的可移动部分承载的,与第一替代方案相比,该第二替代方案对外部磁场更敏感。19.磁元件的尺寸小于永磁体12的尺寸。例如,线圈具有等于2.4毫米的外径、0.9毫米的内径和0.4毫米的高度。永磁体12具有2.0毫米的直径和1.0毫米的高度。铁磁元件26具有0.15毫米的直径和0.05毫米的厚度。注意,这些值可以根据所选择的磁体类型、永磁体和铁磁元件之间的距离、电控制电路提供给电磁系统的电脉冲、磁元件的期望动力学以及其他参数来优化。重要的是,找到磁元件26的尺寸以及找到磁元件26相对于永磁体的定位以获得相当强的吸引力,从而在未激活电磁系统的情况下将柔性构件(尤其是其机械元件)良好地稳定在静止位置中,同时确保电磁力足以克服该磁力以及足以允许机械元件移动,使得机械元件能够在摆轮轮缘上施加一定强度的力,在手表的运行的调节用途中,机械元件必须能够暂时地抵靠摆轮轮缘施加足以执行制动脉冲的压力。20.对于这里描述的第二替代方案,其中电磁系统和铁磁元件的尺寸近似等于上面作为示例给出的尺寸,图5a给出了:a)随机械元件的基于轴线z的移动的变化而变化的磁力的曲线30,该磁力是在永磁体12和铁磁元件26之间产生的,该力在所示的整个移动范围内且特别是在机械元件22在静止位置(z = 0.0mm)和接触位置(z = 0.5mm毫米)之间可以行进的距离内限定了磁返回力;b)在线圈14在2.5v电压下被供电的情况下,随机械元件的基于轴线z的移动的变化而变化的电磁力的曲线32;c)随机械元件的基于轴线z的移动的变化而变化的由电磁力和磁返回力的相加产生的总磁力的曲线34。21.图5b引入了机械返回力,该机械返回力是当弹性叶片20离开其静止位置时由弹性叶片20所施加的力来限定的,该机械返回力由曲线36给出,由弹性叶片的弹性系数来确定。然后,曲线38表示随机械元件的基于轴线z的移动的变化而变化的由磁力(曲线30)和机械返回力(曲线36)的相加产生的总返回力。可以观察到,总返回力从接触位置到静止位置在强度上增加,在静止位置处总返回力是最大的,这是得益于铁磁元件。最后,曲线40给出了随机械元件的基于轴线z的移动的变化而变化的在机械元件22处施加在柔性构件16上的合力。即使该合力在所示的移动范围内改变了数学正负号并因此改变了方向,它在静止位置和所提供的接触位置之间的整个距离上仍然保持为正值。22.图5b中所给出的曲线图涉及特定情况,其中,当柔性构件处于静止位置(z = 0.0)时,弹性元件20是完全松弛的,因此在该位置的机械力为零。在其他替代方案中,在静止位置中提供了弹性元件的预应力。这种预应力可以被提供为正值,使得机械返回力(弹性力)在从静止位置到接触位置的距离的初始部分上是驱动的(driving),或者这种预应力可以被提供为负值,使得在所述距离的全部上,该机械返回力大于作用于所示出的替代方案中的机械返回力。因此,处于静止的柔性构件的预应力允许调节总返回力(特别是对于静止位置和接近静止位置而言),且从而允许调节在制动脉冲期间经由电磁系统提供给柔性构件的能量的量。应当理解,这种调节允许确定在经由(由电控制电路提供给线圈14的)电脉冲致动机械元件时机械元件的动力学。图6给出了在激活电磁系统的大约4 ms的电脉冲期间,机械元件22的沿轴线z的移动。曲线42示出了元件22抵靠着摆轮轮缘24停止以向其提供制动脉冲的真实情况,而曲线44示出了不存在摆轮的相应虚拟情况。每个电脉冲的持续时间可以根据机械元件22和摆轮的轮缘24之间所需的撞击的强度来确定。此外,该持续时间可以设置为大于机械元件在静止位置和接触位置之间的移动时间,以延长机械元件22和轮缘24之间的接触的持续时间。23.在第一实施例的两个其它替代方案中,上述两个替代方案中的铁磁元件被第二永磁体所替代,该第二永磁体具有与永磁体12的磁轴线平行的磁轴线以及具有与该磁体相同的极性。因此,对于在静止位置(包含该静止位置在内)和接触位置之间的机械元件的任一位置而言,用于将柔性构件稳定在静止位置的第一磁体12和第二磁体是呈磁吸引的。优选地,第二永磁体具有实心的、扁平的、圆形的形状,特别是盘的形状。24.图7是将在下面进行描述的第二实施例的介绍。该图示出了上述的电磁系统10。由永磁体12产生的磁场线被示出,针对放置在磁体12外围处且具有相同方向的磁轴线的第二磁体,这些磁场线限定了两个区域,即区域1和区域2。如果两个磁体基于所述方向(轴线z)具有相同的极性,那么它们在区域1中具有磁吸引力,而在区域2中具有磁排斥力。这种观察是图8a至8c所示的第二实施例的基础。25.参考图8a至8c,提出了第二实施例的替代方案,其中用于稳定柔性构件16的静止位置的磁元件是第二永磁体50,其具有限定中心圆的环形形状。对于如图所示的矩形横截面,该中心圆的直径通常由该横截面的两条对角线的交点给定。与第一实施例相同的附图标记涉及与该第一实施例的相应元件或部件相似或类似的元件或部件。26.该第二实施例与前一实施例的不同之处主要在于:机电装置6b的磁元件是第二永磁体,其具有限定中心圆的环形形状;或者在于:该磁元件包括沿着几何圆布置的多个永磁体。中心圆的直径大于第一永磁体的外径,并且当柔性构件处于静止位置(图8a和8c)时,中心圆以第一永磁体12的中心轴线为中心。中心圆的直径被选择成使得在机械元件22从静止位置移动到与摆轮24接触的接触位置期间,第一永磁体12和第二环形永磁体50之间的磁力具有方向的反转。如图8c和8b所示,当柔性构件处于静止时,环形永磁体50位于区域2中,从而两个磁体之间的磁力是吸引力,而在接触位置中,环形永磁体位于区域1中,从而两个磁体因此处于磁排斥。27.因此,在静止位置,环形永磁体50确实起到了其作用:朝向静止位置返回。然而,在电磁系统的激活期间,该环形磁体穿过区域2和区域1之间的边界,且因此磁力变成正值并因此变成驱动力,这相对于第一实施例而言改变了机械元件22的移动的动力学。注意,可以容易地调节环形磁体50沿轴线z的位置。特别地,中心圆可以在第一磁体12的上表面处,或者甚至在下方。由非磁性材料制成的部件48形成线圈14的芯以及被磁体50包围的凸缘。该部件48承受柔性构件16和磁体12之间的撞击。因此,其材料可以被选择以保护第一磁体,优选地,在制动脉冲期间在机械元件已抵靠摆轮轮缘24停止之后,在机械元件朝向静止位置返回期间的在部件48和第一磁体之间的撞击期间,该材料具有良好的吸能能力。28.在未示出的替代方案中,环形磁体50被沿几何圆布置的多个有区分的永磁体所替代。在这种情况下,几何圆的直径大于第一永磁体12的外径,并且当柔性构件处于静止位置时,该几何圆以第一永磁体的中心轴线为中心。几何圆的直径被选择成使得在机械元件在静止位置和接触位置之间移动期间,第一永磁体和多个永磁体之间的磁力具有方向的反转。这种替代方案的优点是不必生产具有小横截面的环形磁体。在第一种情况下,多个磁体可以包括两个小磁体,这两个小磁体以直径相对的方式布置,并且优选地定向成正交于弹性叶片20的末端部分的方向,该末端部分连接到支撑线圈的盘21和部件48。在第二种情况下,提供了沿几何圆规则分布的四个磁体。这些磁体可以容纳在用于与第一磁体接触的部件的凸缘的腔体中。29.参照图9a至11b,下面将描述本发明的第三实施例。这里将不再详细描述上面已经描述的参考内容。该第三实施例的特征在于电磁系统10c和磁元件,电磁系统10c的永磁体52(称为第一永磁体或第一磁体)具有环形形状,磁元件包括永磁体54(称为第二永磁体或第二磁体),永磁体54具有实心的、扁平的、圆形的形状,特别是盘的形状。当机械元件22处于静止位置时(图9a和9c),第二磁体布置成在第一磁体的中心轴线上对齐。该第二磁体被放置在支撑件48a的壳体中,如第二实施例中一样,支撑件48a形成线圈14的芯,以及此外还形成覆盖该线圈下表面的凸缘。基于轴线z的零位置是由第一磁体的上表面限定的,并且柔性构件16的静止位置对应于第二磁体(该第二磁体以与机械元件22同步的方式移动)的定位,其中第二磁体的下表面基本上处于零位置。图9b示出了在以下情况/状态下所考虑的致动器的机电装置6c,其中柔性构件(尤其是其机械元件)处于与摆轮接触的接触位置。30.然后,第二磁体54被布置成使得,在响应于由电控制电路提供给线圈14的电脉冲,机械元件22从其静止位置移动到与摆轮轮缘24接触的接触位置期间,第一环形磁体52和该第二磁体之间的磁力具有方向的反转,以产生制动脉冲。图10a和10b部分地示出了第二可选实施例,其第一和第二磁体的布置类似于图9a至9c中给出的第一可选实施例。因此,这两个磁体之间的相互作用在两个替代方案中是相同的。唯一的区别在于,第二替代方案中的第二磁体的支撑件48b仅形成线圈14的非磁性芯,而第一替代方案的支撑件48a还具有覆盖线圈的下表面的凸缘。在图10a和10b中部分地示出了第一环形磁体和第二磁体的磁场线。第一磁体52的内部空间限定了具有圆柱形状的中心空隙。第一磁体的环形形状具有特殊性,即其在圆柱形中心空隙内部的磁场线具有与磁体自身中的磁场方向相反的方向。因此,在包围该内部空间以及包围分别在该内部空间的任一侧上延伸的两个互补区域的区域3中,由第一磁体产生的磁场方向(基于轴线z)与在所述内部空间上方延伸区域3的区域中该第一磁体的磁场方向相反。31.图10a部分地示出了处于与图9b的情形相对应的情形中的机电装置6c,特别是柔性构件16的盘21、电磁系统10c和附加的磁元件54,其中柔性构件(特别是其机械元件)处于接触位置。在这种状态下,极性与第一环形磁体的极性相反的第二磁体(也就是说在该第一磁体的下表面和上表面之间)受到磁排斥。图10b部分示出了处于与图9a和9c的情形相对应的情形中的机电装置6c,其中柔性构件处于其静止位置。在这种状态下,第二磁体54位于区域3中,且因此它受到第一环形磁体部分上的磁吸引力。32.图11a给出了随磁元件54的移动(从其零位置到机械元件22与摆轮接触的接触位置)的变化而变化的磁力曲线60,该零位置对应于柔性构件/机械元件的静止位置,并且其中磁元件54的下表面与限定该零位置的第一磁体的上表面相同。应当注意,在图11a、11b、13a和13b的图例中,两个磁体之间的磁相互作用由“b”表示,而“em”表示线圈和第一磁体52之间的电磁相互作用,其是激活的(“on”)或是去激活的(“off”)。磁力的方向的反转在图11a的曲线图中可见,曲线60与轴线z=0相交。注意,对于静止位置(z=0),磁力的强度是相对强的,使得第二磁体正确地发挥其用于将柔性构件稳定在静止位置中的作用,然后,磁力迅速减小,直至在刚超出0.2 mm时减为零。然后,在跨过零值之后,磁力为正值,但是其强度保持相对低。然而,在所提供的移动距离上(0.5毫米),克服磁力所需的能量的量明显小于前两个实施例中所需的能量的量。因此,在机械元件22在静止位置和与摆轮轮缘24接触的接触位置之间移动期间,磁力的反转改变了该机械元件在被提供给线圈14的电脉冲期间的移动的动力学,这产生了由曲线62给出的电磁力。总磁力(在电磁系统10c的激活期间磁力和电磁力的相加)由曲线64示出。在给出的示例中观察到,该总磁力在磁元件移动的距离上变化相对小。33.图11b示出了随磁元件54的移动的变化而变化的各种力,同时考虑到了形成柔性构件的弹性元件20的机械力,并且其中机械返回力是由曲线36给出的。曲线66给出了总返回力,总返回力等于磁力和机械力的总和。曲线68对应于电磁力和机械返回力的总和。最后,曲线70给出了:在电磁系统被供电的情况下,分别地取决于磁元件的移动和机械元件的移动(基于轴线z具有小的刻度变化)的所有存在的力的合力的曲线。可以观察到,首先在总返回力(曲线66)中起作用,然后在合力(曲线70)中起作用的各种元件被选择和布置成使得合力在整个移动距离上为正,而总返回力在整个移动距离上为负,“在整个移动距离上”即对于在静止位置和接触位置之间的任何位置而言。关于后一种情况,换句话说,第一环形磁体、第二永磁体和弹性元件被配置和布置成使得:在机械元件22能够行进的整个距离上,机械返回力和磁力的总和具有与该机械元件从静止位置到接触位置的移动方向相反的方向,从而在该整个距离上形成机械元件的朝向静止位置的总返回力。34.参考图12a至12c以及图13a和13b,最后将描述本发明的第四实施例。将不再详细描述上面已经描述的参考内容。该第四实施例与前一实施例的显著不同之处在于:机电装置的磁元件74由铁磁材料构成,并且该铁磁元件74根据轴线z定位在一个不同的高度处。此外,为了在电脉冲被连续地提供给线圈以产生多个制动脉冲期间避免环形磁体52和线圈14之间的碰撞,在静止位置中围绕电磁系统10d设置了圆管76。圆柱形管以这样的方式布置,即当柔性构件处于静止时,柔性构件的盘21支承抵靠该圆柱形管的上表面,圆柱形管的高度被选择成使得,在柔性构件的静止位置中,线圈14位于距永磁体52一定距离处。35.铁磁元件74具有实心的、扁平的、圆形的形状,特别是盘的形状,并且当机械元件处于静止位置时,铁磁元件74布置成在环形永磁体的中心轴线上对齐。铁磁元件被紧固到支撑件78的突出部分上,其中支撑件78形成线圈14的芯。如图12c所示,当柔性构件处于其静止位置时,铁磁元件设置在环形永磁体的内部空间内,且因此相对于前一实施例的第二永磁体具有负偏置量hr,也就是说,铁磁元件的下表面位于位置z=0的下方,与第三实施例类似地,该位置z = 0由永磁体52的上表面的高度限定。通常,铁磁元件被布置成当机械元件处于静止位置时至少部分地位于环形永磁体52的内部空间中。36.图13a和13b给出了两个曲线图,其曲线示出了与图11a和11b的曲线图相同的随铁磁元件的移动的变化而变化的力。曲线80涉及环形永磁体和铁磁元件之间的磁力。可以观察到,当柔性构件静止时,铁磁元件在环形永磁体的内部空间中的定位允许在铁磁元件(或机械元件)可以从柔性构件的静止位置移动的距离的第一部分上具有磁力的负方向,从而具有磁返回力,并且该磁力的强度在柔性构件处于其静止位置(z=0)时是相对大的。电磁力的曲线82与曲线62相同。曲线84示出了总磁力(在电磁系统10d的激活期间磁力和电磁力的相加)。在给定的示例中观察到,该总磁力在磁元件的移动距离上合理地变化,但是它在静止位置和接触位置(z = 0.5mm)之间的整个距离上保持为正值且保持为相对大的。37.图13b示出了随铁磁元件74的移动的变化而变化的各种力,同时考虑到了形成柔性构件的弹性元件20的机械力,并且其中机械返回力是由曲线36给出的。曲线86给出了总返回力,总返回力等于磁力和机械力的总和。曲线88对应于电磁力和机械返回力的总和。最后,曲线90给出了:在电磁系统10d被供电的情况下,分别地取决于铁磁元件和机械元件的移动(基于轴线z具有小的刻度变化)的所有存在的力的合力的曲线。可以观察到,首先在总返回力(曲线86)中起作用,然后在合力(曲线90)中起作用的各种元件被选择和布置成使得合力在整个移动距离上为正,并且对于在机械元件的静止位置和接触位置之间的铁磁元件的任何位置,总返回力为负。换句话说,根据与优选替代方案相关的后一条件,环形永磁体52、铁磁元件74和弹性元件20被配置和布置成使得:在机械元件22能够行进的整个距离上,机械返回力和磁力的总和具有与该机械元件从静止位置到接触位置的移动方向相反的方向, 从而在所述移动距离的全部上形成机械元件的朝向静止位置的总返回力。注意,尽管是优选的,但是合力不必须在直至接触位置之前是正值。实际上,考虑到机械元件的移动的动力学,机械元件以一定的动能到达接触位置,使得在所述移动距离的最后部分上稍微负值的合力不造成主要问题。最后,尽管是优选的,但是总返回力在所述移动距离的全部上保持为负值以及总返回力因此在某个中间区段上失去其返回力的性质并不是必不可少的。实际上,在机械元件和处于接触位置中的摆轮之间的碰撞之后,机械元件22以一定的能量沿相反方向朝着静止位置返回。此外,如果总返回力在移动距离的所述最后部分是大的,则机械元件存储一定的动能,该动能可以允许机械元件穿过其中总返回力暂时地改变方向的某个中间区段。
本文地址:https://www.jishuxx.com/zhuanli/20240730/150325.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 YYfuon@163.com 举报,一经查实,本站将立刻删除。
下一篇
返回列表