技术新讯 > 微观装置的制造及其处理技术 > 接合结构的制作方法  >  正文

接合结构的制作方法

  • 国知局
  • 2024-07-27 12:15:00

技术领域大体上关于接合结构,且详言之,是关于提供两个组件(例如,两个半导体组件)之间的经改良密封性的接合结构。

背景技术:

在半导体装置制造及封装中,一些积体装置经密封以与外部环境隔绝,以便例如减少污染或防止对积体装置损害。举例而言,一些微机电系统(microelectromechanicalsystem;mems)装置包括由利用诸如焊料的黏合剂附接至基板的顶盖界定的空腔。然而,一些黏合剂可为气体可渗透的,以使得气体可随时间推移而穿过黏合剂进入空腔中。湿气或诸如氢气或氧气的某些气体可损害敏感性积体装置。诸如焊料的其他黏合剂产生其自身的长期可靠性问题。因此,保持对用于积体装置的经改良密封的持续需求。

附图说明

图1a为根据各种具体实例的接合结构的示意性侧视截面图。

图1b至图1k为沿着接合结构的接合界面界定的界面结构的各种具体实例的部分示意性截面平面图。

图2a为图1a至图1b中所示的接合结构的界面结构的示意性截面平面图。

图2b为具有延伸穿过接合界面的一或多个电互连件的界面结构的示意性截面平面图。

图2c为图1c的界面结构的示意性截面平面图。

图2d为具有围绕空腔安置以界定实际上环状的轮廓的多个导电性界面特征的界面结构的示意性截面平面图,其中每一导电性界面特征包含大部分环状的轮廓。

图2e为具有围绕空腔安置以界定实际上环状的轮廓的多个导电性界面特征的界面结构的示意性截面平面图,其中该多个导电性特征包含由间隙间隔的多个区段。

图2f为根据一些具体实例的接合结构的示意性侧视截面图。

图2g为根据各种具体实例的接合结构的示意性侧视截面图。

图2h及图2i为包含导电性界面特征的界面结构的示意性平面图,如自平面图所见,该等导电性界面特征包括导电性圆点的数组或其他分散形状。

图3为接合结构的一部分的示意性侧视截面图,该部分包括与界面结构的导电性界面特征连接的裂纹阻止器。

图4a至图4c为接合结构的示意性平面图,当对应界面特征接合在一起时,该等接合结构增加对未对准的容限。

图5a至图5d为界面结构的示意性平面图,当每一半导体组件上的对应界面特征接合在一起时,该界面结构增加对未对准的容限。

图6a至图6b为根据另一具体实例的界面结构的示意性平面图,当每一半导体组件上的对应界面特征接合在一起时,该界面结构增加对未对准的容限。

图7a为导电性界面特征的示意性平面图,其中非导电性界面特征的多个内区域安置于由相交的导电性界面特征界定的交叉网格结构内。

图7b为由接合两个界面特征形成的接合界面结构的示意性平面图。

图7c为图7b的接合界面结构的示意性平面图,其中多个电互连件安置于非导电性界面特征的内区域内。

图8为根据各种具体实例的并有一或多个接合结构的电子系统的示意图。

具体实施方式

本文中所揭示的各种具体实例系关于以实际上密封半导体组件的积体装置以与外部环境隔绝的方式连接两个组件(组件可包含半导体组件)的界面结构。举例而言,在一些具体实例中,接合结构可包含沿着界面结构彼此接合的多个半导体组件。积体装置可耦接至半导体组件或由半导体组件形成。举例而言,在一些具体实例中,接合结构可包含微机电系统(mems)装置,其中顶盖(第一半导体组件)接合至载体(第二半导体组件)。mems组件(积体装置)可安置于至少部分地由顶盖及载体界定的空腔中。

在一些配置中,界面结构可包含围绕积体装置安置的一或多个导电性界面特征及一或多个非导电性界面特征,以连接第一半导体组件及第二半导体组件且界定实际上环状或实际上闭合的轮廓。在一些具体实例中,界面结构可包含第一导电性界面特征、第二导电性界面特征及安置于第一导电性界面特征与第二导电性界面特征之间的固态非导电性界面特征。在一些具体实例中,每一半导体组件可包含相关联的导电性界面特征,且导电性界面特征可彼此直接接合以连接两个半导体组件。

图1a为根据各种具体实例的接合结构1的示意性侧视截面图。图2a为图1a至图1b中所示的接合结构1的界面结构10的示意性截面平面图。接合结构1可包括沿着界面结构10接合至第二半导体组件2的第一半导体组件3。如本文中所解释,无需介入黏合剂,第一半导体组件3及第二半导体组件2的对应接合层11可彼此直接接合。如下文所解释,界面结构10可包括嵌入于周围非导电性界面特征14中的导电性界面特征12。如本文中所解释,每一组件3、2的接合层11可包括可接合以界定密封的导电性界面特征及非导电性界面特征。如图1a中所示,界面特征12、14可垂直地延伸至半导体组件中(例如,至接合层11中),以使得界面特征12、14可在一方向上自一个半导体组件朝向另一半导体组件延伸,例如,相对于接合结构垂直地延伸。第一半导体组件及第二半导体组件可界定空腔5,积体装置4至少部分地安置于该空腔中。在所说明具体实例中,第一半导体组件3可包含一顶盖,该顶盖经塑形以界定空腔,或安置于第二半导体组件2中的空腔上方。举例而言,半导体组件3可包含壁6,该壁围绕积体装置4安置且将空腔5与外部环境隔开。在各种具体实例中,壁6及顶盖可包含半导体材料,诸如硅。在其他具体实例中,壁6及顶盖可包含聚合物、陶瓷、玻璃或其他合适材料。空腔5可包含空气空腔,或可用合适的填充物材料填充。虽然第一组件2及第二组件3在本文中经描述为半导体组件,但在其他具体实例中,第一组件2及第二组件3可包含任何其他合适类型的组件,组件可包含或不包含半导体材料。举例而言,组件2、3可包含各种类型的光学装置,在一些具体实例中,光学装置可不包含半导体材料。

第二半导体组件2可包含具有外部表面9的载体,第一半导体组件3接合至该外部表面。在一些具体实例中,载体可包含基板,诸如半导体基板(例如,具导电性互连件的硅内插件)、印刷电路板(printedcircuitboard;pcb)、陶瓷基板、玻璃基板或任何其他合适载体。在此等具体实例中,载体可在积体装置4与较大的封装结构或电子系统(图中未示)之间传送信号。在一些具体实例中,载体可包含积体装置晶粒,诸如经构以处理由积体装置4转导的信号的处理器晶粒。在所说明具体实例中,积体装置4包含mems组件,诸如mems开关、加速度计、回转仪等。积体装置4可耦接至第一半导体组件3或第二半导体组件2或由该第一半导体组件3或该第二半导体组件2形成。

在一些组态中,将积体装置晶粒4与外部环境隔离或隔开(例如防止曝露于气体及/或污染物)至关重要。举例而言,对于某些积体装置,曝露于湿气或气体(诸如氢气或氧气)可损害积体装置4或其他组件。因此,提供实际上或实质上密封(例如,气密密封或接近气密密封)空腔5及积体装置4以与气体隔绝的界面结构10至关重要。如图1a及图2a中所示,界面结构10可经配置以防止气体自结构1的外表面8穿过界面结构10达到结构1的内表面7。

所揭示具体实例可利用具有低气体渗透率的材料且可配置该等材料以减少或消除气体进入至空腔5中。举例而言,某些气体(诸如氢气)至金属的渗透率可显着低于气体至其他材料(诸如介电材料或聚合物)的渗透率。举例而言,氢气可在外表面8处或附近解离成组成分子。解离原子可扩散穿过壁6或界面结构10且在内表面7处或附近重组。氢气至金属的扩散率可大致与压力的平方根成比例。诸如稀有气体的其他气体完全不会渗透金属。藉由比较,气体可较快地(例如,与压力成比例)通过聚合物或玻璃(氧化硅)材料,此系因为气体分子无需在外壁8处解离成原子即可通过。

因此,本文中所揭示的具体实例可有利地使用界定围绕积体装置4的实际上环状或闭合图案(参见图2a至图2e)的金属来密封接合结构的内部区域(例如,空腔5及/或积体装置4)以与外部环境及有害气体隔绝。有利地,在一些具体实例中,金属图案可包含积体装置4周围的完全闭合的回路,其可相对于其他配置改良密封性。在一些具体实例中,金属图案可包含围绕装置4的不完全环状图案(例如,大部分或部分环状),以使得金属中可存在一或多个间隔。由于气体至金属(诸如铜)的渗透率小于气体至介电质或非导电材料(诸如氧化硅、氮化硅等)的渗透率,因此界面结构10可针对接合结构1的内部区域提供经改良密封。

然而,在一些具体实例中,可能不希望利用仅包括金属或宽度相当大的金属线的界面结构10。若界面结构10包括宽金属线或图案,则金属在化学机械抛光(chemicalmechanicalpolishing;cmp)或其他处理步骤期间可经历明显凹陷。金属线的凹陷可不利地影响将第一半导体组件3的金属线接合至第二半导体组件2的能力,特别在使用直接金属至金属接合技术时。因此,在各种具体实例中,界面结构10可包括一或多个导电性界面特征12,该一或多个导电性界面特征嵌入有一或多个非导电性界面特征14或以其他方式邻近于该一或多个非导电性界面特征。该等导电性界面特征可提供有效障壁,从而防止或减少气体渗透至空腔5及/或至积体装置4中。此外,该等导电性界面特征可足够薄地形成且可散置或嵌入有非导电性界面特征,从而减小或消除凹陷的不利影响。

在本文中所揭示的一些具体实例中,界面结构10可由第一半导体组件上的第一界面特征及第二半导体组件上的第二界面特征界定。该等第一界面特征(包括导电性及非导电性特征)可接合至对应第二界面特征以界定界面结构10。在一些具体实例中,界面结构10可包含分开地接合至第一半导体组件3及第二半导体组件2的单独结构。举例而言,在一些具体实例中,可提供壁6以作为单独开放式框架,大体上平坦的半导体组件3面对该框架设置。第二界面结构(图中未示)可包含一介入结构,其无需介入黏合剂即直接接合在该开放式框架与半导体组件3之间,由此形成与图1a中所示的空腔类似的围封空腔5。界面结构10可提供第一半导体组件3与第二半导体组件2之间的机械及/或电连接。在一些具体实例中,界面结构10可仅提供组件3、2之间的机械连接,其可用来密封空腔5及/或积体装置4以与外部环境隔绝。在其他具体实例中,界面结构10亦可提供组件3、2之间的电连接,以用于例如接地及/或用于传输电信号。如在下文关于图4a至图7c所更详细地解释,该等导电性界面特征可彼此直接接合,而无需介入黏合剂且无需施加压力或电压。举例而言,可准备第一及第二界面特征的接合表面(例如,接合层11)。该等接合表面可经研磨或平坦化,经活化,且用合适物种终止。举例而言,在各种具体实例中,该等接合表面可经研磨至小于1nm,例如小于0.5nm的均方根(root-mean-square;rms)表面粗糙度。该等经研磨接合表面可藉由轻微蚀刻或电浆终止(termination)来活化。在各种具体实例中,该等接合表面可用氮气来终止,例如,藉助于使用含氮溶液进行蚀刻或藉由使用利用氮气的电浆蚀刻。如本文中所解释,该等接合表面可开始接触以无需施加压力即形成直接接合。在一些具体实例中,半导体组件3、2可经加热以加强接合,例如,导电性特征之间的接合。直接接合方法的额外细节可至少在美国专利第9,385,024号、第9,391,143号及第9,431,368号中发现,该等美国专利的全部内容以全文引用的方式且出于所有目的而并入本文中。在一些具体实例中,组件3、2两者的导电性界面特征及组件3、2两者的非导电性界面特征同时地彼此直接接合。

应了解,虽然所说明具体实例系针对mems接合结构,但任何合适类型的积体装置或结构可结合所揭示具体实例使用。举例而言,在一些具体实例中,第一半导体组件及第二半导体组件可包含积体装置晶粒,例如,处理器晶粒及/或内存晶粒。另外,虽然所揭示具体实例包括空腔5,但在其他配置中,空腔可不存在。举例而言,本文中所揭示的具体实例可与任何合适的积体装置或积体装置晶粒一起使用,积体装置或积体装置晶粒中,可能需要密封主动组件以与外部环境及气体隔绝。此外,所揭示具体实例可用以实现其他目标。举例而言,在一些配置中,所揭示界面结构10可用以提供电磁屏蔽物以减少或阻止非所需电磁辐射进入结构1,及/或用以阻止各种类型的信号泄漏。当然,空腔可用任何合适流体来填充,任何合适流体诸如可改良结构1的热、电或机械特性的液体、气体或其他合适物质。

图1b至图1k为界面结构10的各种具体实例的示意性部分截面平面图。将理解,所说明图案可在诸如图1a的空腔5的受保护区域周围完全环状或不完全环状(例如,大部分环状)地延伸,以界定实际上环状或实际上闭合的轮廓。如本文中所使用,实际上环状的结构可包括圆形环状结构,以及界定实际上闭合轮廓(例如,正方形或其他多边形)的非圆形环状结构。如图1b至图1k中所示,界面结构10可包含一个或多个导电性界面特征12及一个或多个非导电性界面特征14。如图1a中所示,导电性特征12及非导电性特征14可垂直地延伸穿过第一半导体组件3及/或第二半导体组件2的部分,例如,垂直地穿过接合层11的部分。举例而言,导电性特征12及非导电性特征14可垂直地延伸穿过第一半导体组件3及/或第二半导体组件2(例如,在非平行或垂直于半导体组件3、2的主表面的方向上)达到至少0.05微米、至少0.1微米、至少0.5微米或至少1微米的垂直距离。举例而言,导电性特征12及非导电性特征14可垂直地延伸穿过第一半导体组件3及/或第二半导体组件2达到在0.05微米至5微米范围内、在0.05微米至4微米范围内、在0.05微米至2微米范围内或在0.1微米至5微米范围内的垂直距离。借由使导电性特征12及非导电性特征14延伸穿过第一半导体组件3及/或第二半导体组件2的部分,导电性特征12及非导电性特征14可提供在半导体组件3、2与界面结构10之间无间隙的密封。设置于半导体组件3、2上的导电性特征12及非导电性特征14可提供用于接合两个半导体组件的大体上平坦的表面。

导电性界面特征12可包含任何合适导体,诸如金属。举例而言,导电性界面特征12可包含诸如空气、氢气、氮气、水、湿气等的流体/气体不可充分渗透的铜、铝或任何其他合适金属。非导电性界面特征14可包含任何合适的非导电材料,诸如介电质或半导体材料。举例而言,在一些具体实例中,非导电性界面特征14可包含氧化硅。有利地,导电性界面特征12及非导电性界面特征14两者的使用可提供经改良密封性以防止气体自外部环境进入至空腔5及/或至装置4中。如上文所解释,诸如金属的导体可通常提供对许多气体的经改良密封性。然而,与导体、金属或半导体相比,某些气体较不容易渗透一些非导电材料(例如,介电质)。在结构上混合导电性特征12与非导电性特征14可提供坚固密封以防止许多不同类型的气体及其他流体进入空腔及/或影响装置4。

在图1b的具体实例中,提供了仅一个导电性界面特征12,其可为完全环状的。导电性界面特征12可嵌入于一或多个非导电性界面特征14中以界定一实际上环状或实际上闭合的轮廓。举例而言,在一些具体实例中,导电性界面特征12可嵌入于块状非导电材料中。在其他具体实例中,多层非导电材料可设置于导电性界面特征12的对置侧上。如图2a中所示,导电性界面特征12可以完全环状图案在空腔5及/或积体装置4周围延伸。在图2a中,举例而言,导电性界面特征12以完全环形或闭合形状围绕空腔5及/或装置4延伸,以使得非导电性特征14的非导电材料不越过导电性界面特征12或与之相交。然而(例如,参见下文的图2d及图2e的描述),在其他具体实例中,在导电性界面特征12的部分之间可存在一或多个间隙,但不具有至空腔5的直接路径。在一些具体实例中,导电性界面特征12的个别组件可为不完全环状的。举例而言,导电性界面特征12的单个组件可为大部分环状的,例如,围绕空腔5及/或积体装置4延伸至少180°、至少270°、至少350°或至少355°(例如,360°),同时合作以界定实际上环状或闭合的界面结构10。此外,如上文所解释,导电性界面特征12可垂直地延伸至且可嵌入于壁6的部分及/或第二半导体组件2的对应部分中。

包括图1b至图1k的实例图案中的任一者的图1a的结构可例如借助半导体制造技术形成,半导体制造技术诸如借助在基板上形成金属线,其通过在基板上沈积、图案化及蚀刻以及沈积氧化物,或通过镶嵌处理。理想地,待接合的金属线与周围非导电材料齐平,或自非导电材料略微(例如,0.5nm至20nm)凹陷或突出地形成。金属线的环状或大部分环状图案可使用半导体处理而形成于半导体组件3、2两者上,半导体处理例如将半导体组件彼此直接接合且产生抵抗气体扩散的有效金属密封。

界面结构10可具有在1微米至1毫米范围内的界面宽度t0。导电性界面特征12可具有在0.1微米至50微米范围内的导体宽度tc。非导电性界面特征14可具有在0.1微米至1毫米范围内的非导体宽度ti。如上文所解释,图1b中所揭示的界面结构10可有利地提供有效密封以阻止气体进入空腔5及/或与装置4相互作用。此外,本文中所揭示的界面结构10可比其他类型的接合或界面薄,此可有利地减小整体封装占据面积。

转而参看图1c,界面结构10可包括多个导电性界面特征12及安置于邻近导电性界面特征12之间的介入的固态(例如,非气态)非导电性界面特征14。图2c为图1c中所示的界面结构10的示意性平面图。如同图1b的实施,界面结构12可围绕积体装置4安置且可包含以实际上环状或闭合的轮廓(例如,各种配置中的完全或不完全环形)配置的导电性特征12,以连接第一半导体组件3与第二半导体组件2。在图1c及图2c中,导电性特征12包含至少一个完全或绝对环形。在其他具体实例中,该等导电性特征可具有不同形状,但可经配置以界定实际上环状或闭合的轮廓。多个导电性特征12的使用可提供多层高不透性材料,从而减少气体流入至空腔5中。与较宽特征相比,利用由非导电性特征14隔开的多个薄导电性特征12可减小由为达成给定程度的整体不渗透性的抛光引起的凹陷的影响。因此,在各种具体实例中,多个导电性特征12可配置在彼此周围,例如大部分或完全地围绕装置4及/或空腔5同心地配置,以提供有效气体密封。

转至图1d,在一些具体实例中,导电性界面特征12可包含以实际上环状或闭合的图案围绕空腔5及/或装置4安置的多个环状导体12a,及连接邻近环状导体12a的多个交叉导体12b。有利地,环状导体12a及交叉导体12b的使用可为利用直接接合的实施(在下文加以解释)提供增加的接触面积,且可提供由于导电材料的有益渗透性质的经改良气体密封。如同图1b至图1c的具体实例,在图1d中,导电性界面特征12可定界闭合回路,以使得非导电性特征14不与导电性特征12相交或越过导电性特征。

图1e至图1g说明具有扭折的环状轮廓的导电性界面特征12,其中多个导电性区段112a至112c端对端地连接且相对于邻近区段成角度。如同图1b至图1d的具体实例,特征12可以实际上环状或闭合的图案,例如以完全环形,围绕空腔5及/或装置4安置。图1e至图1g中所说明的扭折轮廓可包含在横向方向上彼此间隔的第一区段112a及第二区段112c。第一区段112a及第二区段112c可由介入的横向区段112b连接。第一区段112a及第二区段112c可沿着大体平行于空腔5及/或积体装置4周围的至少部分环状的路径的方向而定向。横向区段112c可为横切或非平行于第一区段112a及第二区段112c而定向。在一些具体实例中,非导电性界面特征14可能不越过导电性特征12。

与直线或非扭折的特征12相比较,导电性界面特征12的扭折环状轮廓可有助于直接接合,其具有增加的对未对准的容限,同时保持窄线关于抛光后的凹陷的影响的益处。扭折轮廓可包括任何数目个导电性界面特征12。举例而言,图1e说明具有单一导电性界面特征12的扭折轮廓。图1f说明由介入的非导电性界面特征14横向地间隔的多个导电性界面特征12。如同图1d,在图1g中,间隔的环状导体12a可由交叉导体12b连接。熟习此项技术者将理解,其他图案可为合适的。

图1h至图1k说明具有不规则或z字形的环状轮廓的导电性界面特征12,其中多个导电性区段112a至112f藉助于一或多个弯曲区域11端对端地连接且相对于邻近区段成角度。如图1h至图1k中所示,区段112a至112f可以不规则图案配置,其中区段112a至112f以不同定向成角度及/或具有不同长度。在其他配置中,区段112a至112f可以规则图案沿着环状轮廓以相同或周期性的角度配置。在另外其他配置中,导电性特征12可为弯曲或另外非线性的。相对于直线区段,此等特征亦可使对未对准的容限增加,同时仍使用更易受凹陷影响且因此较早用于直接金属至金属接合中的相对窄的线。

图2b为具有延伸穿过界面结构10的一或多个电互连件的界面结构10的示意性截面平面图。如同图2a,导电性特征12可围绕空腔5及/或积体装置4安置于界面结构10内以界定实际上环状或闭合的轮廓,例如,完全环状轮廓。导电性特征12可包含长度大于宽度(例如,长度为宽度的至少五倍,或为宽度的至少十倍)的细长特征。然而,不同于图2a中所示的界面结构10,图2b的界面结构10包括垂直地延伸穿过一或多个非导电性界面特征14的一个或多个电互连件20。电互连件20可与接合结构1的积体装置4及/或其他组件电通信,从而在结构1的各种组件之间传送信号。在一些具体实例中,电互连件20可自第一半导体组件3延伸至第二半导体组件2。如图2b中所示,电互连件20可与导电性界面特征12在内部间隔且电分离,导电性界面特征本身亦可用来电连接第一半导体组件3及第二半导体组件2中的电路。在其他具体实例中,电互连件20可在外部与导电性界面特征12间隔。在另其他具体实例中,如下文所解释,电互连件20可延伸穿过安置于多个导电性界面特征12之间的介入的非导电性界面特征14。

电互连件20可经由界面结构10提供半导体组件3、2之间的电通信。在非平行或横切于界面结构10的方向上设置互连件20可因此使界面结构10能够充当两个半导体组件3、2之间的机械及电连接。互连件20可包含任何合适的导体,诸如铜、金等。在各种配置中,互连件20可包含导电迹线或硅穿孔。此外,如上文所提及,在习知互连件20存在或不存在的情况下,界面特征12亦可充当环状或大部分环状的电互连件。

图2d为具有围绕空腔5安置以界定实际上环状或闭合的轮廓的多个导电性界面特征12a、12b的界面结构10的示意性截面平面图,其中每一导电性界面特征12a、12b包含不完全环状的特征,例如,延伸大于180°的大部分环状的特征。举例而言,如图2d中所示,每一导电性界面特征12a、12b可包含u形结构,其中特征12b在内部相对于特征12a相隔非导电性间隙39而安置。因此,在图2d中,每一导电性界面特征12a、12b可包含大部分环状的轮廓,但在两个界面特征12a、12b之间有间隙39,以使得界面特征12a、12b中的任一者未必界定闭合回路。图2d中所示的结构10在减少气体渗透至空腔5及/或装置4中方面仍然有效,这是因为导电性界面特征12a、12b的图案组合而形成围绕空腔5的实际上环状或实际上闭合的结构。某种气体可渗透穿过间隙39,但该气体在其可达到空腔5及/或接触装置4之前会具有穿过非导电材料的极长路径,从而克服气体在非导电材料14中相对于导电性界面特征12a、12b的导电材料的较高扩散率。应了解,虽然本文中展示了两个特征12a、12b,但可使用任何合适数目的特征12。

图2e为具有围绕空腔5安置以界定实际上环状或闭合的轮廓的多个导电性界面特征12的界面结构10的示意性截面平面图,其中该多个导电性特征12包含由非导电性间隙39间隔的多个区段。界定图2e中所示的每一导电性界面特征12的该等区段包含线性区段,但在其他具体实例中,该等区段可为弯曲的。在图2e中,一些或所有导电性界面特征12自身可不界定大部分环状图案。然而,由导电性界面特征12的所说明配置界定的图案连在一起可界定实际上环状或闭合的图案。因此,即使特定导电性界面特征12可能并非环状,但多个导电性界面特征12的配置可界定实际上环状或闭合的图案以密封接合结构的内部区域,从而防止气体自外部环境进入内部区域,如图2e中所示。

图2a至图2e的具体实例可相应地包含界面结构10,其包括共同界定实际上环状或闭合的扩散障壁的导电性界面特征12及非导电性界面特征14。举例而言,特定导电性界面特征12可包含完全环形或不完全环形(例如,大部分环状),其与其他导电性及非导电性界面特征配置,从而界定实际上环状的图案或扩散障壁。在一些具体实例中,导电性界面特征可包含诸如直线或弯曲区段的其他形状,该等形状围绕空腔5及/或装置4配置,从而界定实际上环状的图案或扩散障壁。此外,图2d及图2e的具体实例可有利地提供多个导电性区段,其可各自充当单独电连接件,例如,单独信号线连接件、接地线连接件及电源线连接件。彼等区段在一起可提供实际上环状的导电图案以充当扩散障碍。本文中所描述的实际上环状的图案可有利地提供气体达到结构1的敏感性组件要行进的较长距离,此可减小结构1的渗透性。

图2f为根据一些具体实例的接合结构1的示意性侧视截面图。图2f类似于图1a,以下除外:在图2f中,第一半导体组件3可包含由半导体组件3的各种部分形成或与半导体组件3的各种部分耦接的一个或多个电子组件38。举例而言,如所说明,半导体组件3可包含多个电子组件38a至38c。电子组件38a至38c可包含任何合适类型的电子组件。电子组件38可包含任何合适类型的装置,诸如集成电路(例如,一或多个晶体管)或其类似物。在一些具体实例中,电子组件38可借助于互连件(参见图2b)及/或通过导电性界面特征12而与装置4、第二半导体组件2及/或其他组件通信。举例而言,电子组件38可借助于穿过半导体组件3的一或多个导电迹线36与第二半导体组件2通信。电子组件38及迹线36可通过诸如沈积、微影、蚀刻等的半导体处理技术来界定,且可与半导体组件3整合。举例而言,该等迹线可通过习知后道工序互连金属化贯穿多个金属层级而形成。此外,如图2f中所示,本文中所揭示的具体实例中的任一者可包括由第二半导体组件2形成(例如,利用半导体处理技术)或与该第二半导体组件耦接的一个或多个电子组件37。电子组件37可包含诸如集成电路或其类似物的任何合适类型的装置,且可与装置4、第一半导体组件3及/或其他组件通信。举例而言,在一些具体实例中,一或多个电子组件37a可界定在半导体组件2内(例如,埋藏在半导体组件2内或暴露于表面9)。在一些具体实例中,一或多个电子组件37b可界定于半导体组件2的表面9处或上。

图2g为根据各种具体实例的接合结构1的示意性侧视截面图。图2g类似于图1a及图2f,以下除外:在图2g中,可不存在界定于第一半导体组件3与第二半导体组件2之间的空腔。实际上,在图2g的具体实例中,第一半导体组件3及半导体组件2可彼此接合,而无介入的空腔。在所说明具体实例中,如同本文中所描述的具体实例,半导体组件3、2可借助于界面结构10彼此接合,该界面结构界定围绕组件3、2的内部的实际上环状的图案或轮廓。如本文中所解释,半导体组件3、2可至少沿着界面结构10彼此直接接合以界定实际上环状的轮廓,导电性及非导电性界面特征界定于该轮廓中。界面结构10的实际上环状的轮廓可包含本文中所揭示的图案中的任一者。即使图2g的接合结构1中可不存在空腔,但界面结构10可界定有效密封,从而保护结构1的内部中的敏感性电子电路或组件37不受包括例如其他的外部环境影响。应了解,本文中所揭示的具体实例中的任一者可结合不包括空腔的接合结构使用。

此外,如图2g中所说明,第一半导体组件3可包含形成于组件3的表面或靠近该表面形成及/或形成于组件3的主体内的一或多个电子组件38。第二半导体组件2可包含形成于组件2的表面或靠近该表面形成及/或形成于第二半导体组件2的主体内的一或多个电子组件37。电子组件37、38可包含任何合适类型的组件,诸如包括晶体管的电子电路等。组件37、38可可以任何合适配置遍及整个组件3、2而安置。在图2g的具体实例中,第一组件3及第二组件2可包含装置晶粒的任何组合,诸如处理器晶粒、内存晶粒、传感器晶粒等的任何组合。在所说明具体实例中,界面结构10可围绕接合结构1的周边安置,从而密封接合结构1的内部以与外部环境隔绝。在各种具体实例中,因此,接合结构1的内部,例如,由界面结构10界定的实际上环状的图案内的区域,可以或不可接合直接。在所说明具体实例中,一些组件37、38可安置于接合结构1的内部区域内,例如,安置于由界面结构10界定的实际上闭合的轮廓内。第一半导体组件3的第一互连件及第二半导体组件2的第二互连件可在接合结构1的内部区域内彼此直接接合,以连接各别组件3、2中的组件37、38。另外,额外组件可安置于由界面结构10界定的内部区域外。此等额外组件(诸如积体装置晶粒)亦可在内部区域彼此直接接合。

图2h及图2i为界面结构10的示意性平面图,该界面结构包含包括导电性圆点的数组的导电性界面特征12,如自平面图所见。在图2h中,导电性界面特征12包含一圈围绕空腔5(或大体上接合结构的内部)的紧密间隔的圆点。在图2i中,导电性界面特征12包含多圈紧密间隔的圆点,其中外圈的特征相对于内圈的特征横向地偏移,从而改良界面结构10的密封性。虽然图2i中展示了两圈特征12,但应了解,导电性特征12可包含圆点的网状结构或彼此间隔的分散形状,从而界定实际上环状的图案。导电性界面特征12及非导电性界面特征14可合作以界定连接两个半导体组件的实际上环状或实际上闭合的图案。应了解,虽然图2h至图2i中所示的圆点说明为圆形的(例如,圆形或椭圆形),但在其他具体实例中,该等圆点可包含任何合适的分散形状,诸如多边形。此外,如本文中所解释,在一些具体实例中,导电性界面特征12(例如,圆点)可仅充当两个半导体组件3、2之间的接合机构。然而,在其他具体实例中,一些或所有导电性界面特征12可充当电互连件(诸如互连件20的末端或连接至互连件的衬垫)以提供半导体组件3、2之间的电通信。应了解,图2h及图2i的特征可与本文中所揭示的各种其他具体实例组合。

图3为接合结构1的一部分的示意性侧视截面图,该部分包括与界面结构10的导电性界面特征12连接的裂纹阻止器13。裂纹阻止器13包括交替的较宽及较窄区段,此系因为裂纹阻止器穿过晶粒内之后道工序互连结构垂直地连接,且因此可阻止或减小裂纹在半导体组件中的一者(例如,第二组件2)中的传播。通过将低k介电质引入至功能装置晶粒之后道工序(back-endoftheline;beol)互连层中,介电质的抗裂性可实质上减小且可与硅的抗裂性相当或显着小于硅的抗裂性。因此,在由芯片封装相互作用引起的压力下,防止晶粒边缘处的开裂及低k介电层的分层可具有挑战性。有利地,芯片边缘处的开裂可通过在低k介电质中在周边周围并入经图案化金属界面结构(例如,裂纹阻止器13)来减小,该等结构通过增大芯片边缘附近的抗裂性而充当裂纹阻止件。

图4a至图4c为接合结构10的示意性平面图,当来自半导体组件3、2中的每一者的对应界面特征接合在一起时,该等接合结构增加对未对准的容限。在一些具体实例中,图4a至图4c的接合结构10可经配置以在来自邻近半导体组件的对应导电性界面特征12、12'未对准时提供有效气体密封。如本文中所解释,在各种具体实例中,界面结构10可由安置于第一半导体组件3上的第一界面特征及安置于第二半导体组件2上的第二界面特征界定。举例而言,如图4a至图4c中所示,第一导电性界面特征12及第一非导电性界面特征14可安置于第一半导体组件3上。第二导电性界面特征12'及第二非导电性界面特征14'可安置于第二半导体组件2上。第一及第二界面特征可包含上文关于图1a至图2b所描述的材料。举例而言,在各种具体实例中,第一及第二导电性界面特征12、12'可包含铜。在各种具体实例中,第一及第二非导电性界面特征14、14'可包含氧化硅。

如同图1a至图2b的接合结构1,在一些具体实例中,图4a至图4c的界面结构10可在空腔5及/或积体装置4周围延伸以界定实际上环状的图案,例如,该等导电性特征可定界界定实际上环状的图案的完全环形或不完全环形。以实际上环状的图案安置界面结构10可有利地密封空腔5及/或积体装置4以防止气体进入接合结构1。然而,在其他具体实例中,图4a至图4c的界面结构10可用作不同于气体密封或除气体密封以外的应用的界面。举例而言,图4a至图4c的界面结构10可用于任何应用中以顾及当导电性特征彼此接合时的未对准。在一些具体实例中,图4a至图4c的界面结构10可提供半导体组件之间的一或多个直接电及/或机械连接。在各种具体实例中,图4a至图4c的界面结构10可以或可能不会以环状图案围绕积体装置4安置。在一些具体实例中,例如,界面结构10可安置于半导体组件的对应外表面上的多个分散位置处,诸如针对下文关于图7c所描述的互连件20。在此等具体实例中,界面结构10可充当半导体组件之间的电互连。第一及第二界面特征可以多种方式彼此接合。在一些具体实例中,无需介入黏合剂且无需施加压力及/或温度,第一及第二界面特征可彼此直接接合。

在将直接接合用于界面结构10的具体实例中,可准备第一及第二界面特征的接合表面。举例而言,无需介入黏合剂且无需施加压力或电压,第一导电性界面特征12及第一非导电性界面特征14的接合表面可直接接合至第二导电性界面特征12'及第二非导电性界面特征14'的对应接合表面。该等接合表面可经研磨或平坦化,经活化,且用合适物种终止。该等接合表面可开始接触以无需施加压力即形成直接接合。在一些具体实例中,半导体组件3、2可经加热以加强接合,例如,导电性特征之间的接合。结合所揭示具体实例中的每一者使用的直接接合制程的额外细节可见于美国专利第7,126,212号、第8,153,505号、第7,622,324号、第7,602,070号、第8,163,373号、第8,389,378号及第8,735,219号中,且可见于美国专利申请案第14/835,379号、第62/278,354号、第62/303,930号及第15/137,930号中,该等申请案中的每一者的内容特此以全文引用的方式且出于所有目的而并入本文中。

在图4a的结构10中,导电性界面特征12、12'相对较薄,以使得可避免来自抛光的凹陷且促进直接金属至金属接合。若各别界面特征横向地未对准,然而,特征12、12'之间的导电性黏合剂35相对较小。图4a中所示的导电性接合35可包含隔离的接触区域,此可提供不充分气体密封(及/或不充分电连接)。

因此,如图4b至图4c中所示,导电性界面特征12、12'可足够宽地形成,从而确保电连接件的恰当电导率且亦提供较好的扩散障壁。图4b至图4c的厚导电性特征12、12'可有利地实现较大导电性接合35,且亦改良界面结构10的气体密封能力(及/或电连接件)。在图4b中,例如,可使导电性特征12、12'的厚度比接合程序的最大未对准容限厚。因此,若接合程序具有未对准容限t,则导电性界面特征12、12'的横向厚度可大于或等于t。在各种直接接合程序中,例如,未对准容限t可在0.1微米至25微米范围内。尺寸标定导电性特征12、12'的厚度以等于或超过接合程序的最大未对准容限t可确保导电性接合35形成闭合结构。

在图4c的具体实例中,导电性界面特征12、12'的厚度可选择为大于为介入的非导电性界面特征14、14'所提供的空间。因此,在图4c中,导电性特征12可比非导电性14、14'厚。以此方式尺寸标定导电性特征12可确保导电性特征12、12'沿着连续界面配合。因此,图4b至图4c的相对较厚导电性特征12、12'可在即使存在未对准的接合期间提供导电性界面特征12、12'之间的有效连接,且连续界面可提供环状或大部分环状的扩散障壁。

图5a至图5d为界面结构10的示意性平面图,界面结构增加当每一半导体组件3、2上的对应界面特征10a、10b接合在一起时的对未对准的容限,同时提供有效金属扩散障壁。如上文关于图4a至图4c所解释,顾及接合(例如,直接接合)两个对应界面特征10a、10b时的未对准可为至关重要的。界面特征10a、10b可分别安置于第一半导体组件3及第二半导体组件2的外部表面上。界面特征10a、10b可包含一或多个导电性界面特征12、12',该一或多个导电性界面特征亦可嵌入于一或多个非导电性界面特征14、14'中或与之耦接。在一些具体实例中,无需介入黏合剂,导电性界面特征12、12'可结合在一起且直接接合。在一些具体实例中,非导电性界面特征14、14'亦可彼此直接接合。在其他具体实例中,黏合剂可用以接合组件。导电性特征12、12'可界定沿着特征12、12'彼此重叠的区域的导电性接合35。

为了增加对未对准的容限,导电性界面特征12、12'可包含交替地配置且与多个窄部分15连接的多个宽部分16。举例而言,如图5a中所示,每一宽部分16可连接于两个窄部分15之间,且每一窄部分15可连接于两个宽部分16之间。窄部分15可具有在0.1微米至25微米范围内的第一宽度t。宽部分可具有小于t且在0.5微米至50微米范围内的第二宽度w。此外,如图5a中所示,宽部分16可以第一距离g彼此间隔,介入的非导电性界面特征14可安置于第一距离中。宽部分16及窄部分15可端对端地连接,窄部分15可具有与第一距离g相同的长度。第一距离g可在0.1微米至50微米范围内。薄部分可以第二距离h彼此间隔,第二距离亦可包含宽部分16的长度。第二距离h可在0.2微米至50微米范围内。此外,宽部分16的最外边缘可相对于窄部分15的最外边缘偏移横向偏移x,如下文所解释,该横向偏移可对应于接合程序在x方向上的最大对准容限。横向偏移x可在0.1微米至25微米范围内。

有利地,可提供宽区段16以改良接合结构1的气体密封能力,如上文所解释。可提供窄区段14以减小可由于抛光出现的凹陷的影响,由此促进直接的导体至导体接合。图5b说明接合之后的界面结构10,其中几乎不存在各别界面特征10a、10b的未对准。如图5b中所示,导电性特征12、12'在y方向上以半间距偏移彼此完全重叠,如图5a中所示,以使得接合导电性区域以大型导电性接合35提供闭合路径。如图5b中所示,在几乎不存在未对准的情况下,导电性特征12、12'在导电性接合35处,亦即平行于横向偏移x,横向地完全重叠,这是因为宽部分16的最外边缘的横向偏移可选择为对应于接合程序的最大对准容限。举例而言,关于特定接合程序的横向未对准容限x,第一宽度t及第二宽度w可选择为满足关系x≤(w-t)/2。关于接合期间的纵向未对准容限y,针对特定接合程序,第一距离g及第二距离h可选择为满足关系y≤(h-g)/2。满足此等关系确保不同半导体组件3、2的导电性特征12、12'之间的连续重叠或接合线。

图5c说明当界面特征10a、10b以未对准容限x横向地未对准且以未对准容限y纵向地未对准时的接合界面结构10。如图5c中所示,即使当界面特征10a、10b针对特定接合程序以x及y未对准时,所得接合界面结构10包含导电性接合35处的导电性界面特征12、12'之间的明显且连续的重叠,此可提供实际上环状的扩散障壁,例如,完全环状或大部分环状的扩散障壁。

图5d说明当界面特征10a、10b以未对准容限x加上第一宽度t横向地未对准时的接合界面结构10,其中纵向未对准小于(h-g)/2。如图5d中所示,当纵向未对准小于(h-g)/2(例如,平行于y)时,图5d的接合界面结构10可适应甚至大于接合程序的未对准容限x的横向未对准,这是因为当纵向未对准小于(h-g)/2时,窄部分15的额外宽度可贡献导电性接合35处的额外接合区域。虽然重叠接合区域与图5c中相比横向上宽度较小,但金属至金属接合界面保持连续且提供优于例如氧化物的扩散障壁。

图6a至图6b为根据另一具体实例的界面结构10的示意性平面图,当每一半导体组件3、2上的对应界面特征10a、10b接合在一起时,该界面结构增加对未对准的容限。在图6a至图6b的具体实例中,非导电性界面特征14、14'可包含多个内区域114a及多个外区域114b。内区域114a可完全由导电性界面特征12、12'包围(在水平平面中)。在所说明具体实例中,多个导电性界面特征12、12'可包含许多区块17,该等区块包围(例如,完全包围)非导电性界面区域14、14'的内区域114a而安置。非导电性界面区域14、14'的外区域114b可安置于邻近外区块17之间的间隙中。

在一些具体实例中,区块17的第一宽度t1可大于内区域114a及/或外区域114b的第二宽度t2。举例而言,在一些具体实例中,区块17的第一宽度t1可在0.2微米至25微米范围内。内区域114a及/或外区域114b的第二宽度t2可在0.1微米至20微米范围内。尺寸标定区块17大于区域114a、114b可使得导电性特征12、12'能够具有明显重叠的导电性接合35,如图6b的接合界面结构10中所示。

图7a为导电性界面特征10a的示意性平面图,其中非导电性界面特征14的多个内区域114a安置于晶格内(由晶格包围)。举例而言,图7a中所示的界面特征10a包含由相交的导电性界面特征12界定的交叉网格结构。图7b为接合两个界面特征10a、10b形成的接合界面结构10的示意性平面图。如图7a中所示,导电性特征12可包括窄导电性区段19互连的多个宽区块18。宽区块18可提供经改良的气体密封能力,且可提供窄导电性区段19以避免由抛光程序引起的凹陷的负面影响,由此促进直接金属至金属接合。在图7a中,区块18及区段19配置成网格,其中导电性特征12彼此垂直地安置。然而,在其他具体实例中,特征12可相对于彼此非垂直地配置。

在图7a至图7b中,区块18可具有第一宽度t1,其大于安置于邻近区块18之间的间隙g的第二宽度t2。举例而言,在一些具体实例中,第一宽度t1可在0.2微米至50微米范围内。第二宽度t2可在0.1微米至25微米范围内。如图7b中所示,以此方式隔开区块18可有利地实现沿着导电性接合35在导电性特征12之间的较大重叠区域,且产生多个邻近的金属接合线,此可对密封接合结构1以与气体隔绝有益。

虽然图7a至图7b中所示的晶格包含相交导电线的网格,但在其他具体实例中,晶格可包含弯曲、周期性或不规则形状。举例而言,在一些具体实例中,晶格可包含互连多边形的蜂巢结构。在一些具体实例中,晶格可包含多个三角形、人字形图案或具重复形状的任何其他合适晶格。

图7c为图7b的接合界面结构10的示意性平面图,其中多个电互连件20安置于非导电性界面特征14的内区域114a内。如上文关于图2b所解释,将额外导电性电互连件20并入至界面结构10中可为有利的。如此处理使得接合结构1能够提供半导体组件3、2之间的大量信号线、电力线及/或接地线的气体密封及电通信。在图7c的具体实例中,举例而言,导电性界面特征12及非导电性界面特征14可提供半导体组件3、2之间的机械连接,其充当对进入结构的气体的有效障壁。导电性特征12可包含长度大于宽度的细长特征。电互连件20可安置于内区域114a内且可与导电性特征12电隔离。互连件可穿过非导电性特征14自第一半导体组件3垂直地延伸至第二半导体组件2,以提供半导体组件3、2之间的电通信。将理解,藉由两个导电性特征12的重叠及接合产生的实际上环状的图案,例如,完全或大部分环状的图案,亦可充当两个半导体组件3、2之间的额外或唯一电连接。

因此,在图4b至图7c的具体实例中,第一半导体组件3可包含第一图案,该第一图案具有由第一半导体组件3的外部表面上的导电线形成的重复形状。该第一图案可包含以一第一间距与第二导电性界面特征12间隔的第一导电性界面特征12,且第一非导电性界面特征14安置于第一导电性界面特征及第二导电性界面特征12之间。第一导电性界面特征12可具有大于该第一间距的一第一宽度。第二半导体组件2可具有第二图案,该第二图案具有由第二半导体组件2的一外部表面上的导电线形成的重复形状。该第二图案可包含以一第二间距与第四导电性界面特征12间隔的第三导电性界面特征12,且第二非导电性界面特征14安置于第三导电性界面特征及第四导电性界面特征12之间。第三导电性界面特征12可具有大于该第二间距的一第二宽度。第一及第二导电性界面特征12可接合至第三及第四导电性界面特征12以界定界面结构10。即使该第一图案及该第二图案可相对于彼此横向地偏移,但接合的第一图案及第二图案仍然可定界沿着界面结构10的一连续的导电性接合区域35。

图8为根据各种具体实例的并有一或多个接合结构1的电子系统80的示意图。系统80可包含任何合适类型的电子装置,诸如行动电子装置(例如,智能电话、平板计算装置、膝上型计算机等)、桌面计算机、汽车或其组件、立体声系统、医疗装置、摄影机或任何其他合适类型的系统。在一些具体实例中,电子系统80可包含微处理器、图形处理器、电子记录装置或数字内存。系统80可包括一或多个装置封装82,其例如借助于一或多个主板而机械地且电连接至系统80。每一封装82可包含一或多个接合结构1。图8中所示的系统80可包含本文中所展示及描述的接合结构1及相关联界面结构10中的任一者。

在一个具体实例中,揭示一种接合结构。该接合结构可包括具有一第一界面特征的一第一组件,及具有一第二界面特征的一第二组件。该接合结构可包括一积体装置,该积体装置耦接至该第一组件或该第二组件或由该第一组件或该第二组件形成。该第一界面特征可直接接合至该第二导电性界面特征以界定一界面结构。该界面结构可安置于该积体装置周围以界定一实际上闭合的轮廓以连接该第一组件与该第二组件。该实际上闭合的轮廓可实质上密封该接合结构的一内部区域以防止气体自外部环境扩散至该内部区域中。

在另一具体实例中,一接合结构包含一第一组件及一第二组件。该接合结构可包括一积体装置,该积体装置耦接至该第一组件或该第二组件或形成于该第一组件或该第二组件内。一界面结构可安置于该第一组件与该第二组件之间。该界面结构可包含在一方向上自该第一组件延伸至该第二组件的一第一导电性界面特征、在一方向上自该第一组件延伸至该第二组件的一第二导电性界面特征及横向地安置于该第一导电性界面特征与该第二导电性界面特征之间的一固态非导电性界面特征。该界面结构可围绕该积体装置安置以界定一实际上闭合的轮廓以连接该第一组件与该第二组件。

在另一具体实例中,一接合结构包含一第一组件及一第二组件。一积体装置可耦接至该第一组件或该第二组件或由该第一组件或该第二组件形成。一界面结构可安置于该第一组件与该第二组件之间,该界面结构在一方向上自该第一组件延伸至该第二组件。该界面结构可包括:一第一细长的导电性界面特征,其在一方向上自该第一组件延伸至该第二组件;及一第二细长的导电性界面特征,其在一方向上自该第一组件延伸至该第二组件。该第一细长的导电性界面特征及该第二细长的导电性界面特征可由在一方向上自该第一组件延伸至该第二组件的一介入的非导电性界面特征间隔。该第一细长的导电性界面特征及该第二细长的导电性界面特征中的每一者可具有大于一宽度的一长度。一电互连件可与该积体装置电通信,该电互连件自该第一组件延伸至该第二组件。该电互连件可延伸穿过处于该第一导电性界面特征与该第二导电性界面特征之间的该介入的非导电性界面特征。

在另一具体实例中,一接合结构包含具有一第一图案的一第一组件,该第一图案具有由该第一组件的一外部表面上的导电线形成的重复形状。该第一图案可包含以一第一间距与一第二导电性界面特征间隔的一第一导电性界面特征,一第一非导电性界面特征安置于该第一导电性界面特征与该第二导电性界面特征之间。该第一导电性界面特征可具有大于该第一间距的一第一宽度。该接合结构可包含具有一第二图案的一第二组件,该第二图案具有由该第二组件的一外部表面上的导电线形成的重复形状。该第二图案可包含以一第二间距与一第四导电性界面特征间隔的一第三导电性界面特征。一第二非导电性界面特征可安置于该第三导电性界面特征与该第四导电性界面特征之间,该第三导电性界面特征具有大于该第二间距的一第二宽度。该第一导电性界面特征及该第二导电性界面特征可接合至该第三导电性界面特征及该第四导电性界面特征以界定一界面结构。该第一图案及该第二图案可相对于彼此横向地偏移,但定界沿着该界面结构的一连续的导电性接合区域。

在另一具体实例中,揭示一种接合结构。该接合结构可包括一第一组件及一第二组件。一积体装置可耦接至该第一组件或该第二组件或由该第一组件或该第二组件形成。一界面结构可安置于该第一组件与该第二组件之间。该界面结构可包含横向地围封该积体装置的一第一导电性界面特征。该导电性界面特征可在该第一组件与该第二组件之间连续地延伸,以形成该两个组件之间的一电、机械或热连接中的至少一者。一非导电性界面特征可在该第一组件与该第二组件之间连续地延伸。

出于概述所揭示具体实例及所达成的优于先前技术的优点的目的,已在本文中对某些目标及优点加以描述。当然,应了解,并不需要根据任何特定具体实例达成所有此等目标或优点。因此,举例而言,熟习此项技术者将认识到,可以如本文中所教示或建议来达成或优化一个优点或一组优点而不一定达成本文中可能教示或建议的其他目标或优点的方式来实施或进行所揭示实施。

所有此等具体实例意欲在本发明的范围内。对于熟习此项技术者而言,此等及其他具体实例将自具体实例的参看附图的以下详细描述变得显而易见,技术方案不限于所揭示的任何特定具体实例。虽然本文中已揭示此特定具体例及实例,但熟习此项技术者应理解,所揭示实施延伸超出特别揭示的具体实例而至其他替代性具体实例及/或用途及明显修改及其等效者。另外,虽然已经展示且详细地描述若干变化,但基于本发明,其他修改对于熟习此项技术者而言将显而易见。亦预期,可进行具体实例的特定特征及态样的各种组合或子组合且其仍在范围内。应理解,所揭示具体实例的各种特征及态样可彼此组合或彼此取代,以便形成所揭示实施的变化模式。因此,希望本文中所揭示的目标的范围不应受上文所描述的特定揭示的具体实例限制,而应仅由所附申请专利范围的正确阅读来判定。

本文地址:https://www.jishuxx.com/zhuanli/20240726/121299.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 YYfuon@163.com 举报,一经查实,本站将立刻删除。