技术新讯 > 微观装置的制造及其处理技术 > 微纳层结构的制作方法、加工装置以及电子器件与流程  >  正文

微纳层结构的制作方法、加工装置以及电子器件与流程

  • 国知局
  • 2024-07-27 12:45:32

1.本技术涉及图案化的电子器件加工技术领域,尤其涉及一种微纳层结构的制作方法、加工装置以及电子器件。背景技术:2.纳米压印技术是一种新型的微纳加工技术,纳米压印技术突破了传统光刻在特征尺寸减小过程中的难题,具有分辨率高、低成本的特点。因此有望在未来取代传统光刻技术,成为电学、光学和光电学等领域的重要加工手段。3.目前纳米压印利用压印模板在设有胶层的基板上进行压印,压印模板上通常具有图案,压印模板直接接触并挤压胶层后,会将图案印制在胶层上,接着再将形成图案的胶层固化,最后经过蚀刻和剥离等步骤,使得基板上形成需要的图形。4.然而,上述的纳米压印技术,步骤较为复杂,加工效率较低,且压印模板会污染胶层,导致成品率降低。技术实现要素:5.本技术实施例公开了一种微纳层结构的制作方法、加工装置以及电子器件,加工过程中掩膜件不与基板接触,从而避免了基板上的胶层被污染,提高了成品率。且加工步骤简单,效率较高。6.本技术实施例第一方面公开了一种微纳层结构的制作方法,包括以下步骤,7.步骤s10:提供掩膜件,掩膜件具有导磁性或磁性,掩膜件包括交错分布的第一区域和第二区域,第一区域的磁场强度大于第二区域的磁场强度。8.步骤s11:提供基板,基板包括基体以及设于基体上的原胶层,原胶层包括胶体和掺杂于胶体内的磁性粒子。磁性粒子可以为逆磁粒子或者顺磁粒子。9.步骤s12:将掩膜件与基板相对,且所述掩膜件与所述基板之间具有预设距离,第一区域的磁性力驱动与第一区域对应的磁性粒子移动,以使原胶层形成图案化掩膜层;图案化掩膜层包括交错分布的掩膜部和间隔区,掩膜部的磁性粒子密集度大于间隔区的磁性粒子密集度;掩膜部和间隔区中的一个与第一区域对应,另一个与第二区域对应。第一区域的磁性力可以为排斥力或者吸附力,其中磁性粒子为逆磁粒子时,磁性力为排斥力;磁性粒子为顺磁粒子时,磁性力为吸附力。10.步骤s13:以图案化掩膜层为掩膜,蚀刻基体,以使基体形成图案化的介质层。具体的,掩膜部被部分蚀刻,间隔区全部被蚀刻,且基体与间隔区对应的区域被蚀刻,以使基体形成图案化的介质层。11.步骤s14:去除图案化的介质层上剩余的图案化掩膜层以形成介质层。具体的,间隔区被全部蚀刻,掩膜部被部分蚀刻,因此去除图案化的介质层上剩余的图案化掩膜层,实际为去除图案化的介质层上剩余的掩膜部。12.本技术实施例提供的微纳层结构的制作方法,整个制作过程中,掩膜件不与原胶层接触,而是利用磁性力作用于原胶层内的磁性粒子,从而进行图案化处理,掩膜件与原胶层不接触,因此加工清洁度较高,成品率得以提升。另外,本技术实施例的制作方法相较于现有的制作方法,无需前烘、曝光、显影、后烘等步骤,过程比较简单,简化了制作步骤,提升了加工效率。13.一种实施例中,磁性粒子为逆磁粒子;第一区域的磁性力驱动与第一区域对应的磁性粒子移动的步骤包括:第一区域对逆磁粒子产生排斥力,排斥力驱动逆磁粒子向与第二区域对应的区域移动,以形成与第二区域对应的掩膜部,以及形成与第一区域对应的间隔区。14.可以理解,第一区域向对应的逆磁粒子产生排斥力的同时,第二区域的磁场强度虽然较弱,但是也可能会向对应的逆磁粒子产生排斥力,第一区域产生的排斥力称为第一排斥力,第二区域产生的排斥力称为第二排斥力,第一排斥力大于第二排斥力,即可确保第一排斥力能够驱动逆磁粒子移动。15.逆磁粒子为金、银、铜和铅等中的一种或者多种制成。逆磁粒子具有从磁场较强区域向磁场较弱区域逃离的性质,第一区域的磁场强度大于第二区域的磁场强度,因此,逆磁粒子会向与第二区域对应的区域移动,从而在原胶层上形成掩膜部和间隔区。第一区域的排斥力排斥逆磁粒子时,不与逆磁粒子和胶体接触,即可使得原胶层上形成凸部,从而降低了污染率,提高了成品率。16.一种实施例中,磁性粒子为顺磁粒子;第一区域的磁性力驱动与第一区域对应的磁性粒子移动的步骤包括:第一区域对顺磁粒子产生吸附力,吸附力驱动顺磁粒子向与第一区域对应的区域移动,以形成与第一区域对应的掩膜部,以及形成与第二区域对应的间隔区。17.可以理解,第一区域向对应的顺磁粒子产生吸附力的同时,第二区域也有可能向对应的顺磁粒子产生吸附力。第一区域产生的吸附力称为第一吸附力,第二区域产生的吸附力称为第二吸附力,第一吸附力大于第二吸附力,即可确保第一吸附力能够驱动顺磁粒子移动。18.顺磁粒子为四氧化三铁、铁、钴、镍中一种或者多种制成,顺磁粒子位于磁场中时,会趋向于向磁场较强的区域移动。顺磁粒子具有向磁场较强区域移动的性质,第一区域的磁场强度大于第二区域的磁场强度,因此,顺磁粒子会向与第一区域对应的区域移动,从而形成掩膜部和间隔区。第一区域的吸附力吸附顺磁粒子时,不与顺磁粒子和胶体接触,即可使得原胶层上形成掩膜部,从而降低了污染率,提高了成品率。19.一种实施例中,掩膜部为向远离基体凸出的凸部,间隔区为向靠近基体下凹的凹陷部。凸部的截面为从中部向两边高度逐渐降低的形状,类似为凸出的弧形。凸部的厚度大于凹陷部的厚度。由此,在蚀刻时,基体与凸部对应的部位被凸部遮挡,而凹陷部被全部蚀刻,且与凹陷部对应的基体被蚀刻,从而能够形成图案化的介质层。因凸部和凹陷部形成时,未与掩膜件接触,因此精度较高,那么凸部作为掩膜部蚀刻基体时,使得蚀刻精度和成品率均较高。20.一种实施例中,掩膜件的磁感应强度介于0.1特斯拉至50特斯拉之间,胶体的粘度介于1帕斯卡秒至10000帕斯卡秒之间。掩膜件的磁感应强度介于上述范围内,能够确保掩膜件对磁性粒子产生足够的排斥力,确保凸部的顺利形成,又能使得凸部的厚度保持在蚀刻后能形成合适的微纳结构的范围内。避免掩膜件的磁感应强度不合适,导致凸部厚度不够,可能会出现后续蚀刻不到基体而导致未能加工成微纳结构的情况;或者,导致凸部厚度过厚,可能会出现后续蚀刻的微纳结构过深的情况。原胶层的胶体的粘度处于上述范围内,能够使得凸部顺利成形,且厚度保持在能够蚀刻成图案的范围内。避免导致凸部成形失败,或者是即使成形了,但是凸部的厚度不合适。21.一种实施例中,第一区域的磁性力驱动与第一区域对应的磁性粒子移动的步骤包括:第一区域的磁性力驱动与第一区域对应的磁性粒子带动胶体移动,以形成凸部。磁性粒子带动胶体移动,具体可以为逆磁粒子带动胶体向与第二区域对应的区域移动,或者是顺磁粒子带动胶体向与第一区域对应的区域移动。胶体移动后会形成凸部和凹陷部,从而便于后续进行蚀刻。22.一种实施例中,掩膜部为磁粒子聚集部,间隔区为磁粒子稀疏部;磁粒子聚集部处的磁性粒子密集度大于磁粒子稀疏部的磁性粒子密集度。掩膜部处磁性粒子密集度较高,而间隔区没有磁性粒子或者磁性粒子密集度较低,那么掩膜部的硬度会大于其余部位的硬度,在蚀刻时,相同时间内,掩膜部的厚度降低的较少。间隔区被全部蚀刻,且与间隔区对应的基体被蚀刻一部分后,掩膜部还剩余部分,从而能够形成图案化的介质层。因磁粒子聚集部和磁粒子稀疏部形成时,未与掩膜件接触,因此精度较高,磁粒子聚集部作为掩膜部,使得蚀刻精度和成品率均较高。23.一种实施例中,掩膜件的磁感应强度介于0.01特斯拉至5特斯拉之间,胶体的粘度介于0.001帕斯卡秒至100帕斯卡秒之间。掩膜件的磁感应强度介于上述范围内,能够确保掩膜件对磁性粒子产生足够的吸附力,确保掩膜部的顺利形成,又能使得掩膜部的逆磁粒子的密集度保持在蚀刻后能形成合适的微纳结构的范围内。避免掩膜件的磁感应强度不合适,导致掩膜部处逆磁粒子的密集度不够,可能会出现后续蚀刻不到基体而导致未能加工成微纳结构的情况;或者,导致掩膜部处逆磁粒子过于密集,可能会出现后续蚀刻的微纳结构过深的情况。原胶层的胶体的粘度处于上述范围内,能够使得掩膜部顺利成形,且逆磁粒子的密集度保持在能够蚀刻成图案的范围内。避免导致掩膜部成形失败,或者是即使成形了,但是掩膜部的磁性粒子密集度不合适。24.一种实施例中,第一区域的磁性力驱动与第一区域对应的磁性粒子移动的步骤包括,第一区域的磁性力驱动与第一区域对应的磁性粒子移动,以形成磁粒子聚集部。磁性粒子移动,具体可以为逆磁粒子向与第二区域对应的区域移动,或者是顺磁粒子向与第一区域对应的区域移动。磁性粒子移动后会形成磁粒子聚集部和磁粒子稀疏部,从而便于后续进行蚀刻。25.一种实施例中,第一区域对磁性粒子产生第一磁性力的同时,第二区域对磁性粒子产生第二磁性力,第一磁性力为第二磁性力的5倍至200倍之间。由此,能够确保第一磁性力大于第二磁性力,使得第一磁性力能够驱动磁性粒子移动。26.一种实施例中,掩膜件的数量为两个;磁性粒子为逆磁粒子;将掩膜件与基板相对,第一区域的磁性力驱动与第一区域对应的磁性粒子移动的步骤包括:将基板放置于两个掩膜件之间,以使原胶层与其中一个掩膜件相对,基体与其中另一个掩膜件相对;其中一个掩膜件的第一区域的第一排斥力、以及另一个掩膜件的第一区域的第二排斥力,驱动与第一区域对应的逆磁粒子移动。27.可以理解,位于基板上下两侧的两个掩膜件,两个掩膜件各自的第一区域相对,两个掩膜件各自的第二区域相对,也就是说,两个掩膜件各自的第一区域在高度方向上对齐,两个掩膜件各自的第二区域在高度方向上对齐。第一排斥力和第二排斥力均作用于逆磁粒子,能够加快逆磁粒子向与第二区域对应的区域逃离,从而加快掩膜部的形成,以提高生产效率。28.一种实施例中,第一区域的厚度大于第二区域的厚度,以使第一区域的磁场强度大于第二区域的磁场强度。利用第一区域和第二区域厚度差异,使得第一区域和第二区域的磁场强度出现差异,利用磁场强度的差异在吸附或者排斥磁性粒子,从而形成掩膜部,掩膜件的结构较为简单,加工方便,成本较低。29.一种实施例中,掩膜件包括层叠分布的掩膜板和电磁件,掩膜板为软磁体制成;第一区域和第二区域形成于掩膜板上,且第一区域和第二区域的厚度相等;电磁件包括多个电磁铁,多个电磁铁与第一区域对应,且多个电磁铁形成的图案与第一区域的形状相同;以使掩膜板被电磁件磁化后,第一区域的磁场强度大于第二区域的磁场强度。由此,掩膜板的结构简单,易于加工,且结构强度较强,还能够确保掩膜部的顺利成形。30.本技术第二方面提供一种电子器件,包括:基层、介质层及功能层,介质层和功能层依次层叠在基层的表面,介质层采用本技术第一方面中任一项的制作方法制成。介质层利用上述制作方法制作而成,良品率较高,成本较低。31.本技术第三方面提供一种微纳层结构的加工装置,用于本技术第一方面中任一项的制作方法中,其中的加工装置包括:掩膜件;掩膜件具有导磁性或磁性,掩膜件包括交错分布的第一区域和第二区域,第一区域的磁场强度大于第二区域的磁场强度。32.一种实施例中,第一区域的厚度大于第二区域的厚度,以使第一区域的磁场强度大于第二区域的磁场强度。利用第一区域和第二区域厚度差异,使得第一区域和第二区域的磁场强度出现差异,利用磁场强度的差异在吸附或者排斥磁性粒子,从而形成掩膜部,掩膜件的结构较为简单,加工方便,成本较低。33.一种实施例中,掩膜件具有相背设置的第一表面和第二表面,掩膜件包括多个遮挡区和多个镂空区,镂空区贯穿第一表面和第二表面,多个遮挡区与多个镂空区交错设置,多个遮挡区形成的图案与掩膜部相同,或者多个镂空区形成的图案与掩膜部相同。由此,掩膜件的重量较轻,体积较小。34.一种实施例中,掩膜件包括多个凸起和多个凹部,任意相邻的两个凹部之间的区域形成凸起;多个凸起形成的图案与掩膜部相同,或者多个凹部形成的图案与掩膜部相同。由此,掩膜件的结构强度较强,不易变形,能够延长掩膜件的使用寿命。35.一种实施例中,掩膜件包括层叠的第一板和第二板,第二板具有相背设置的第一表面和第二表面,第二板包括多个遮挡区和多个镂空区,镂空区贯穿第一表面和第二表面,任意相邻的两个镂空区之间的区域形成遮挡区;第一板和第二板固定连接,多个遮挡区与第一板形成多个凸起,多个镂空区与第一板形成多个凹部;多个凸起形成的图案与掩膜部相同,或者多个凹部形成的图案与掩膜部相同。由此,便于加工,从而降低了成本。第一板用于增强整个掩膜件的结构强度,使得掩膜件不易变形,从而延长掩膜件的使用寿命。36.一种实施例中,掩膜件为永磁体制成。永久磁体自身具有磁性,无需外力干涉就能够产生磁场;永久磁体具体可以为钐钴磁铁、钕铁硼磁铁、铁氧体磁铁、铝镍钴磁铁或者铁铬钴磁铁等;永久磁体磁性比较稳定,无需外力协助,使用较为方便。37.一种实施例中,掩膜板包括层叠分布的掩膜板和电磁件,掩膜板为软磁体制成;掩膜板包括第一预备区和第二预备区,电磁件通电产生磁性时第一预备区和第二预备区具有磁性,第一预备区为第一区域,第二预备区为第二区域。软磁体可以为纯铁、低碳钢、硅钢片、坡莫合金、铁氧体等中的一种或者多种制成;软磁体磁性较为灵活,能够与电磁件配合,从而可以根据实际需要控制软磁体的磁性强度和有无,适用性较强。38.一种实施例中,电磁件包括多个电磁铁,多个电磁铁与第一区域对应,且多个电磁铁形成的图案与第一区域的形状相同。第一区域的厚度大于第二区域,结合电磁件与第一区域对应,可以使得第一区域的磁场强度明显大于第二区域的磁场强度,从而使得上述第一排斥力远大于第二排斥力,或者是使得第一吸附力远大于第二吸附力,以增加掩膜部的形成速度,加快了生产效率。39.一种实施例中,电磁件包括第一组电磁铁和第二组电磁铁,第一组电磁铁与第一区域对应,且第一组电磁铁形成的图案与第一区域的形状相同;第二组电磁铁与第二区域对应,且第二组电磁铁形成的图案与第二区域的形状相同。也就是说,多个电磁铁均匀的层叠于掩膜板的上方,由此,掩膜件的结构比较简单,易于制造出来。40.一种实施例中,掩膜板包括层叠分布的掩膜板和电磁件,掩膜板为软磁体制成;掩膜板包括第一预备区和第二预备区,第一预备区和第二预备区的厚度相同;电磁件通电产生磁性时第一预备区和第二预备区具有磁性,第一预备区为第一区域,第二预备区为第二区域;电磁件包括多个电磁铁,多个电磁铁与第一区域对应,且多个电磁铁形成的图案与第一区域的形状相同。也就是说,本实施例中,掩膜板的厚度均匀,电磁件与第一区域对应,从而使得第一区域的磁场强度大于第二区域的磁场强度。由此,掩膜板的结构简单,易于加工,且结构强度较强,还能够确保掩膜部的顺利成形。41.本技术实施例提供的微纳层结构的制作方法,整个制作过程中,掩膜件不与原胶层接触,而是利用磁性力吸附或者排斥原胶层内的磁性粒子,从而进行图案化处理,掩膜件与原胶层不接触,因此加工清洁度较高,成品率得以提升。无接触加工还能适用于更小尺寸的图案加工,例如20纳米以下图案。另外,本技术实施例的制作方法相较于现有的制作方法,无需前烘、曝光、显影、后烘等步骤,过程比较简单,简化了制作步骤,提升了加工效率。附图说明42.以下对本技术实施例用到的附图进行介绍。43.图1是电子器件的部分结构截面示意图。44.图2是图1所示的微纳层结构的制作方法的流程图。45.图3是图1所示的微纳层结构的制作方法的掩膜件的一种实施方式的俯视图。46.图3a至图3f是图3中所示微纳层结构的制作方法提供的掩膜件的侧面结构示意图。47.图4是图2中所示微纳层结构的制作方法提供的基板的结构示意图。48.图5a至图5f是图2中所示微纳层结构的制作方法中掩膜件与基板相对的结构示意图。49.图6a至图6f是对应图5a至图5f的掩膜件和基板,并利用掩膜件使得基板形成掩膜部的示意图。50.图7a和图7b是图2中所示微纳层结构的制作方法中掩膜件与基板相对的另一种结构示意图。51.图8a和图8b是对应图7a和图7b中掩膜件利用磁场使得基板形成掩膜部示意图。52.图9a至图9f是图2中所示微纳层结构的制作方法中掩膜件与基板相对的又一种结构示意图。53.图10a至图10f是对应图9a至图9f中掩膜件利用磁场使得基板形成掩膜部的示意图。54.图11a和图11b是图2中所示微纳层结构的制作方法中掩膜件与基板相对的再一种结构示意图。55.图12a和图12b是对应图11a和图11b中掩膜件利用磁场使得基板形成掩膜部的示意图。56.图13a和图13b是图2中所示微纳层结构的制作方法中掩膜件与基板相对的另一种结构示意图。57.图14a和图14b是对应图13a和图13b中掩膜件利用磁场使得基板形成掩膜部的示意图。58.图15a和图15b是图2中所示微纳层结构的制作方法中掩膜件与基板相对的又一种结构示意图。59.图16a和图16b是对应图15a和图15b中掩膜件利用磁场使得基板形成掩膜部示意图。60.图17a是图6a至图6f、图8a至图8b、图10a至图10f中形成的图案化掩膜层被刻蚀后的结构示意图。61.图17b是图12a至图12b、图14a至图14b、图16a至图16b中形成的图案化掩膜层被刻蚀后的结构示意图。62.图18是图17a和图17b中的图案化的介质层上剩余的掩膜部被去除的结构示意图。具体实施方式63.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。64.本技术实施例提供一种电子器件,电子器件包括图案化的介质层,电子器件可以用于电学、光学和光电学等领域的电子器件制作,比如,用来制备半导体电子器件、光栅等。半导体电子器件如发光二极管芯片(light-emitting diode,led)、有机发光二极管(organic light-emitting diode,oled)、薄膜晶体管或者场效应晶体管等。以上电子器件适用于手机、显示屏及电脑等电子设备。比如应用于手机显示屏。其中,导电线路层和绝缘功能层,具有纳米级尺寸的图案,可以称之为微纳层结构。65.请参阅图1和图2,图1是电子器件的部分结构截面示意图,图2是图1所示的微纳层结构的制作方法流程图。66.本实施例电子器件10包括基层11、介质层12及功能层13,介质层12及功能层13依次层叠在基层的表面。基层11可以是玻璃层。介质层12可以为二氧化硅制成。67.本实施例以制作发光二极管芯片为例进行说明。功能层13为多层结构,比如包括n或者p型半导体层、金属层、绝缘层、发光层、台阶层等层结构。本实施例图1中,只展现了介质层12,功能层13简单示意。68.在其它实施例中,电子器件为薄膜晶体管(thin film transistor,tft),可以应用于液晶显示器(liquid crystal display,lcd)或者有机发光二级管显示器(oled)的阵列基板上,功能层为多层结构,比如包括栅极、源漏极、沟道层等。69.本实施例中的微纳层结构主要为绝缘的介质层12,本实施例提供一种微纳层结构的制作方法,包括以下步骤。70.步骤s10:提供掩膜件,掩膜件具有导磁性或磁性,掩膜件包括交错分布的第一区域和第二区域,第一区域的磁场强度大于第二区域的磁场强度。具体的,掩膜件包括多个第一区域和多个第二区域,每两个相邻的第一区域之间间隔具有一第二区域;也就是说,第一区域和第二区域交替分布。第一区域的磁场强度大于第二区域的磁场强度,第二区域的磁场强度最小可以为0。第一区域和第二区域用于在电子器件的基层上形成图案化掩膜层。71.参阅图3、图3a至图3f,图3是图1所示的微纳层结构的制作方法的掩膜件的一种实施方式俯视图,其中,只是示意了掩膜件一种情况,不代表是掩膜件唯一的形态。图3a至图3f是图3中所示微纳层结构的制作方法提供的掩膜件的侧面结构示意图。72.参阅图3a,本技术第一实施例中,掩膜件100为薄板状且为永磁体,永磁体自身具有磁性,无需外力干涉就能够产生磁场;永磁体具体可以为钐钴磁铁、钕铁硼磁铁、铁氧体磁铁、铝镍钴磁铁或者铁铬钴磁铁等;永磁体磁性比较稳定,无需外力协助,使用较为方便。73.掩膜件100为薄板状,其包括相背设置的第一表面103和第二表面104,还包括多个镂空区105和多个遮挡区106。多个镂空区105贯穿第一表面103和第二表面104,并与多个遮挡区106交错设置,实际上是镂空区105贯穿第一表面103和第二表面104,镂空区105之外的其他位置形成遮挡区106。遮挡区106为的第一区域101,镂空区105为的第二区域102。第二区域102没有磁性或者导磁性材料的存在,因此第二区域102磁场强度弱于第一区域101的磁场强度,甚至于没有磁场,从而实现第一区域101的磁场强度大于第二区域102的磁场强度。74.在第一实施例的一种实施方式中,掩膜件100无磁性且可导磁,通过磁铁或者电磁铁将磁性传递至掩膜件。在另一种实施方式中,掩膜件100为板体内部参杂有磁性粒子,磁性粒子可以为永久性磁粒子;比如采用硅胶和磁性粒子混合在一起固化成型为板状掩膜件100。75.参阅图3b,本技术的掩膜件的第二实施例中,掩膜件200包括第一表面201和第二表面202,第一表面201向第二表面202凹设有多个凹部203,凹部203未贯穿第二表面202,相邻两个凹部203之间形成凸起204,凸起204和凹部203交替分布,凸起204为第一区域101,凹部203为第二区域102。本实施例中,掩膜件为永磁体,且一体成型。因凹部203的厚度小于凸起204的厚度,因此凹部203处的磁场强度弱于凸起204,从而实现第一区域101的磁场强度大于第二区域102的磁场强度。通过设置凹部203,能实现磁场强度的区分,而凹部203的底壁面至第二表面202之间可以作为支撑掩膜件200的支撑体,能确保掩膜件200结构强度较强,不易变形,使用寿命较长。76.一种实施方式中,掩膜件200包括第一板210和与第一板210层叠固定的第二板220,第一板210没有磁性,第二板220与第一实施例的掩膜件相同,可以是永磁体或者是具有导磁性。第一板210用于增强第二板220的强度,使得整个掩膜件200不易变形,且使用寿命较长。第二板220与第一板210层叠固定后,结构与图3b中所示的第二实施例的结构相同,此时,掩膜件200具体包括凹部203和凸起204,凸起204为第一区域101,凹部203为第二区域102。在此不做详细描述。在其他实施方式中,第一板210也可以具有磁性。77.当然,本实施例的掩膜件200也可以没有磁性,通过外部导磁产生磁性。另一种实施方式中,在掩膜件200附近设置电磁铁,电磁铁通电后即可使得软磁体磁化,从而产生磁场。软磁体可以为纯铁、低碳钢、硅钢片、坡莫合金、铁氧体等中的一种或者多种制成;软磁体磁性较为灵活,可以根据实际需要控制软磁体的磁性强度和有无,适用性较强。78.本技术的掩膜件的第三实施例中,掩膜件包括掩膜板和电磁件,掩膜板和电磁件层叠且间隔排布,掩膜板包括第一预备区和第二预备区,电磁件通电产生磁性时第一预备区和第二预备区具有磁性,第一预备区为第一区域,第二预备区为第二区域。一种实施方式中,第一预备区包括多个遮挡区,第二预备区包括多个镂空区,多个遮挡区和多个镂空区交错设置,多个遮挡区即为多个第一区域,多个镂空区即为多个第二区域。另一种实施方式中,第一预备区包括多个凸起,第二预备区包括多个凹部,多个凸起和多个凹部交错设置,多个凸起即为多个第一区域,多个凹部即为第二区域。79.掩膜板为软磁体,软磁体自身不具有磁性,但是具有导磁性,当软磁体处于磁场中时,可以被磁化从而具有磁性。具体通过使软磁体处于电磁场中的方式磁化软磁体。本实施例中掩膜板的结构可以是上述任意实施例的结构。80.电磁件包括多个间隔排列的电磁铁,多个电磁铁至少对应遮挡区,也可以理解为,多个电磁铁形成的图案与多个遮挡区形成的图案是完全相同的。电磁件还包括承载多个电磁铁的主体(图未示),主体具体可以为板状、柱状等等能够承载电磁件的部件。81.一种实施方式中,电磁件与多个遮挡区和多个镂空区对应的位置均设有电磁铁,可以分为第一组电磁铁和第二组电磁铁;其中,与多个遮挡区对应的电磁铁称为第一组电磁铁,与多个镂空区对应的电磁铁称为第二组电磁铁。第一组电磁铁形成的图案与多个遮挡区形成的图案完全相同,第二组电磁铁形成的图案与多个镂空区形成的图案完全相同;并且第一组电磁铁的磁性大于或者等于第二组电磁铁的磁性。其中,一个遮挡区为即为一个第一区域,一个镂空区即为第二区域,也就是说,第一区域和第二区域的数量均为多个。82.电磁件包括电磁铁,电磁铁包括铁芯和线圈,铁芯为软磁体,铁芯上缠绕线圈,然后给线圈通电,即可将铁芯磁化,使电磁铁具有磁性,从而产生磁场。软磁体可以为纯铁、低碳钢、硅钢片、坡莫合金、铁氧体等中的一种或者多种制成;软磁体磁性较为灵活,可以根据实际需要控制软磁体的磁性强度和有无,适用性较强。83.参阅图3c,第三实施例的一种实施方式中,掩膜件300包括掩膜板310和电磁件320,掩膜板310和电磁件320层叠且间隔排布。本实施例的掩膜板310为软磁体,软磁体自身不具有磁性,但是能够被电磁件磁化,磁化后的软磁体会产生磁场,从而能够对磁性粒子产生磁性力。掩膜板310包括多个遮挡区311和多个镂空区312,多个遮挡区311和多个镂空区312交错设置;一个遮挡区311为一个第一区域101,一个镂空区312为一个第二区域102,也就是说,第一区域101和第二区域102的数量也均为多个。84.电磁件320包括多个间隔排列的电磁铁321,多个电磁铁321分为第一组电磁铁322和第二组电磁铁323,第一组电磁铁322对应第一区域101,第二组电磁铁323对应第二区域102。每一个电磁铁321包括铁芯324和线圈325,铁芯324为软磁体,铁芯324上缠绕线圈325,然后给线圈325通电,即可将铁芯324磁化,使电磁铁321具有磁性,从而产生磁场。85.在掩膜板310上方设置电磁件320并通电,通电后,掩膜板310处于电磁场中,因遮挡区311的厚度大于镂空区312,因此,遮挡区311导磁产生较强的磁性,镂空区312不导磁,因此镂空区312处的磁性较弱,从而在掩膜件300上的第一区域101和第二区域102形成磁场强度的差异。86.参阅图3d,第三实施例的另一种实施方式中,掩膜件400包括掩膜板410和电磁件420,掩膜板410和电磁件420层叠间隔排布。掩膜板410为软磁体,掩膜板410包括多个凸起411和多个凹部412,多个凸起411和多个凹部412交错设置。电磁件420包括多个间隔排列的电磁铁421,电磁件420与多个凸起411和多个凹部412对应的位置均设有电磁铁421,与多个凸起411对应的多个电磁铁421称为称为第一组电磁铁422,与多个凹部412对应的多个电磁铁421称为第二组电磁铁423。第一组电磁铁422形成的图案与多个凸起411形成的图案完全相同,第二组电磁铁423形成的图案与多个凹部412形成的图案完全相同;并且第一组电磁铁422的磁性大于或者等于第二组电磁铁423的磁性。其中,凸起411为第一区域101,凹部412为第二区域102。87.电磁件420包括多个电磁铁421,电磁铁421包括铁芯424和线圈425,铁芯424为软磁体,铁芯424上缠绕线圈425,然后给线圈425通电,即可将铁芯424磁化,使电磁铁421具有磁性,从而产生磁场。88.第三实施例的又一种实施方式中,掩膜板410包括第一板413和与第一板413层叠固定的第二板414,第一板413无磁性,第二板414与第一实施例的掩膜件相同,可以是永磁体或者具有导磁性。第一板413用于增强第二板414的强度,不易变形,使用寿命较长。第二板414与第一板413组层叠固定后,结构与上述实施方式的结构相同,包括凹部412和凸起411,凸起411为的第一区域101,的凹部412为的第二区域102。在此不做详细描述。89.在掩膜板410上方设置电磁件420,此时掩膜板410处于电磁场中,凸起411的厚度大于凹部412的厚度,因此凹部412处的磁性较弱,使得在掩膜件400上的第一区域101和第二区域102形成磁场强度的差异。90.参阅图3e,第三实施例的另一种具体实施方式中,掩膜件500包括掩膜板510和电磁件520,掩膜板510和电磁件520层叠间隔排布。掩膜板510为软磁体,掩膜板510包括多个遮挡区511和多个镂空区512,多个遮挡区511和多个镂空区512交错设置。电磁件520包括多个间隔排列的电磁铁521,多个电磁铁521对应遮挡区511,也可以理解为,多个电磁铁521形成的图案与多个遮挡区511形成的图案是完全相同的。电磁件520还包括承载多个电磁铁的主体(图未示),具体的,多个电磁铁均固定于主体上。遮挡区511形成第一区域101,镂空区512形成第二区域102。91.电磁件520包括多个电磁铁521,电磁铁521包括铁芯522和线圈523,铁芯522为软磁体,铁芯522上缠绕线圈523,然后给线圈523通电,即可将铁芯522磁化,使电磁铁521具有磁性,从而产生磁场。92.本实施方式中,与图3c中所示的掩膜件不同的是,只有与遮挡区511对应的位置设置有电磁铁。即掩膜件500的电磁铁521只有一组,并对应遮挡区511。因此第一区域101所处的磁场强度大于第二区域102所处的磁场强度,软磁体磁化后,第一区域101的磁场强度大于第二区域102的磁场强度;另外,镂空区512处没有磁性或者导磁性材料的存在(镂空区512厚度小于遮挡区511的厚度),因此镂空区512处的磁场强度弱于遮挡区511,第一区域101和第二区域102的磁场强度差异被增大,可以更高效的实现电子器件上微结构的加工。93.参阅图3f,掩膜件的第四实施例中,掩膜件600包括掩膜板610和电磁件620,掩膜板610和电磁件620层叠间隔排布。掩膜板610为厚度均匀的软磁体。电磁件620包括多个间隔排列的电磁铁621,多个电磁铁621对应第一区域101,也可以理解为,多个电磁铁621形成的图案与多个第一区域101形成的图案是完全相同的。多个电磁铁621通电,使掩膜板610具有磁性,即掩膜板610上与多个电磁铁621对应的位置即为第一区域101,其他位置为第二区域102,且交错设置。第一区域101和第二区域102交错设置。94.其中,掩膜板610为薄板,包括第一表面613和第二表面614,且均为平面。电磁铁621与第一表面613间隔相对。多个电磁铁621间隔设置,多个电磁铁621组成的图案,也就是所在位置为第一区域101,即线圈通电后,掩膜板610位于磁场内的位置磁化之后,与电磁铁621相对的区域即为第一区域101,两个电磁铁621之间的区域即为第二区域102;因第一区域101处对应的设置有电磁铁621,第二区域102对应的位置未设置磁铁,因此第一区域101所处磁场的强度大于第二区域102所处的磁场的强度。95.本实施例中的第一区域101的磁性和第二区域102的磁性呈波峰波谷式分布,第二区域102虽然没有电磁铁621对应,但是两个电磁铁621之间的也会有磁性,只是磁场较弱,因此,第二区域102的磁场较弱,且处于波谷位置,第一区域101的磁场较强,且处于波峰位置。也就是说,电磁铁621通电将掩膜板610磁化后,掩膜板610上强磁性和弱磁性交替分布,强磁性对应的区域即为第一区域101,弱磁性对应的区域即为第二区域102。可以理解,与电磁铁621相对的区域的面积与电磁铁621在第一表面613上投影面积大小相等,或者是,与电磁铁621相对的区域的面积大于电磁铁621在第一表面613上的投影面积。96.图4是图2中所示微纳层结构的制作方法提供的基板的结构示意图。97.步骤s11:提供基板700,基板700包括基体710以及设于基体710上的原胶层720,原胶层720包括胶体721和掺杂在胶体721内的磁性粒子722,磁性粒子722为逆磁粒子或者顺磁粒子。磁性粒子722掺杂在胶体721内。逆磁粒子为金、银、铜和铅等中的一种或者多种制成。逆磁粒子位于磁场中时,会向磁场较弱的区域或者是没有磁场的区域逃离。顺磁粒子为四氧化三铁、铁、钴、镍中一种或者多种制成,顺磁粒子位于磁场中时,会趋向于向磁场较强的区域移动。磁性粒子722在胶体721内均匀设置。98.原胶层720采用旋涂方式形成在基体710的一表面上。本实施例中,基体710为二氧化硅板、玻璃板、硅板、磷化铟板和砷化镓板中任一种。原胶层720采用热压印胶或者紫外压印胶制成,热压印胶包括热塑性压印胶或者热固性压印胶,热塑性压印胶为聚甲基丙烯酸酯、聚苯乙烯和聚碳酸酯中的一种或者多种组合;热固性压印胶为聚乙烯基苯酚和邻苯二甲酸丙烯酯低聚物中的一种或者二者的组合。紫外压印胶包括丙烯酸型、聚苯乙烯型和环氧型中的一种或者二者的组合。99.步骤s12:图案化原胶层,将掩膜件与基板相对,掩膜件与基板之间具有预设距离,第一区域的磁性力驱动与第一区域对应的磁性粒子移动,以使原胶层形成图案化掩膜层;图案化掩膜层包括交错分布的掩膜部和间隔区,掩膜部的磁性粒子密集度大于间隔区的磁性粒子密集度;掩膜部和间隔区中的一个与第一区域对应,另一个与第二区域对应。需要说明的是,根据介质层实际功能需求,多个第一区域对应的掩膜部,也就是多个掩膜部中任意两个或者多个可以在某个边缘位置相互连接,用于形成介质层的图案,以适应金属走线的设计。同样多个间隔区中任意两个或者多个可以在某个边缘位置相互连接。100.参阅图5a、图5b、图5c、图5d、图5e及图5f,图5a至图5f是图2中所示微纳层结构的制作方法中掩膜件与基板相对的示意图。图5a至图5f中的掩膜件分别对应图3a至图3f中的掩膜件。101.参阅图6a、图6b、图6c、图6d、图6e及图6f,图6a至图6f是对应图5a至图5f的掩膜件和基板,并利用掩膜件使得基板形成掩膜部的示意图。也就是步骤s12的采用第一至第四实施例的几种实施方式的示意图。102.一种实施例中,步骤s12具体包括:图案化原胶层720,第一区域对逆磁粒子726产生排斥力,排斥力驱动逆磁粒子726向与第二区域对应的区域移动,形成与第二区域对应的掩膜部723,以及形成与第一区域对应的间隔区724。其中,掩膜部723为向远离基体凸出的凸部723a,间隔区724为向靠近基体下凹的凹陷部。凸部723a的厚度大于凹陷部。103.第一区域101产生的排斥力称为第一排斥力,第一排斥力驱动逆磁粒子726移位,使得原胶层720形成凸部723a和凹陷部,以使原胶层720形成图案化掩膜层725,凸部723a即为掩膜部723。也就是说,此时的磁性粒子722为逆磁粒子726,第一区域101的磁性力称为第一磁性力,第一磁性力为第一排斥力,凸部723a形成于原胶层720与第二区域102对应的区域。104.第二区域102的磁场强度虽然较小,但是也有可能会产生作用于逆磁粒子726的第二磁性力,第二磁性力为第二排斥力,其中,第二排斥力小于第一排斥力,且第二排斥力可以趋近于0。使得第一区域101对应的逆磁粒子726可以快速移动至与第二区域102对应,从而加快制备效率。第一排斥力为第二排斥力的5倍至200倍之间。本实施例中,第一排斥力为第二排斥力的100倍。在其他实施例中,第一排斥力为第二排斥力的5倍、10倍、20倍、40倍、70倍、80倍、110倍、200倍等。105.第一区域101和第二区域102邻近,因此第二区域102距离相邻的第一区域101越远的位置受到第一区域101的磁场影响越弱,第二区域102距离相邻的第一区域101越近的位置受到的第一区域101的磁场影响越强,因此,第二区域102的中心部的磁性排斥力最小,逆磁粒子726会趋向于向与第二区域102的中心部对应的位置处移动,逆磁粒子726移动过程中会带动胶体移动,因此,最终形成的凸部723a的截面为从中部向两边高度逐渐降低的形状,类似为凸出的弧形。106.步骤s12更具体的如下:将基板700放置于掩膜件下方,且使得原胶层720位于掩膜件下方。然后将掩膜件朝向基板700方向移动,当掩膜件与基板700之间的距离达到预设距离时,停止移动掩膜件;以使第一区域101对原胶层720中的逆磁粒子产生第一排斥力;第一排斥力驱动逆磁粒子移位,使得原胶层720与第二区域102对应的区域形成凸部723a,以使原胶层720形成图案化掩膜层725。107.与原胶层720相对的掩膜件与基板700之间的预设距离依据后续形成的凸部723a的高度确定,以凸部723a不与掩膜件相接触为基准进行设置。也就是图中位于基板700上方的掩膜件与基板700之间的预设距离,依据凸部723a的高度确定,此处预设距离指的是:基体710面对原胶层720的表面与掩膜件朝向基板700的表面之间的距离,可以理解为掩膜件与原胶层720不接触。例如,凸部723a的高度为3毫米,具体为凸部723a最高点与基体710面对原胶层720的表面之间的距离为3毫米。那么则设置上方的掩膜件移动至与基板700之间的距离为3毫米以上即可,具体可以设置为4毫米、5毫米、7毫米等等。108.因磁性粒子为逆磁粒子726,掩膜件的磁场对位于其中的逆磁粒子726产生第一排斥力。由于掩膜件的第一区域101的磁场强度大于第二区域102的磁场强度,因此逆磁粒子726受到第一排斥力作用后,原胶层720上与第一区域101对应区域的逆磁粒子726,向与磁场较弱的第二区域102对应的区域移动,逆磁粒子726移动过程中,会带动对应的胶体721移动,以使原胶层720与第一区域101对应的区域变薄形成间隔区724,原胶层720与第二区域102对应的部位向远离基体710方向凸起,形成凸部723a,进而使原胶层720形成图案化掩膜层725。109.本实施例中,掩膜件的磁感应强度范围介于0.1特斯拉至50特斯拉之间。例如,掩膜件的磁感应强度为0.1特斯拉、5特斯拉、10特斯拉、15特斯拉、25特斯拉、35特斯拉、45特斯拉或者50特斯拉等。110.掩膜件的磁感应强度介于上述范围内,能够确保掩膜件对磁性粒子产生足够的排斥力,确保凸部723a的顺利形成,又能使得凸部723a的厚度保持在蚀刻后能形成合适的微纳结构的范围内。避免掩膜件的磁感应强度不合适,导致凸部723a厚度不够,可能会出现后续蚀刻不到基体而导致未能加工成微纳结构的情况;或者,导致凸部723a厚度过厚,可能会出现后续蚀刻的微纳结构过深的情况。111.原胶层720的胶体721的粘度范围介于1帕斯卡秒(pa·s)至00帕斯卡秒(pa·s)之间。例如原胶层720的胶体721的粘度为1帕斯卡秒、5帕斯卡秒、10帕斯卡秒、20帕斯卡秒、帕斯卡秒、500帕斯卡秒、2000帕斯卡秒、4000帕斯卡秒、6000帕斯卡秒、8000帕斯卡秒、00帕斯卡秒等。112.原胶层720的胶体721的粘度处于上述范围内,能够使得凸部723a顺利成形,且厚度保持在能够蚀刻成图案的范围内。避免导致凸部723a成形失败,或者是即使成形了,但是凸部723a的厚度不合适。113.本实施例中,掩膜件与基板700的原胶层720相对,具体将掩膜件与原胶层720背离基体710的表面相对,以使掩膜件与原胶层720之间的距离更近,使得磁性排斥力更好的作用于磁性粒子,以使凸部723a快速形成,从而加快生产进度。114.图6a中,由于掩膜件100的遮挡区106(第一区域101)的磁场强度大于镂空区105(第二区域102)的磁场强度,因此原胶层720内的逆磁粒子726受到第一排斥力作用后,原胶层720上与遮挡区106对应区域的逆磁粒子726,向与磁场较弱的镂空区105对应的区域移动,逆磁粒子726移动过程中,会带动对应的胶体721移动,以使原胶层720与遮挡区106对应的区域变薄形成间隔区724,原胶层720与镂空区105对应的部位向远离基体710方向凸起,形成凸部723a(掩膜部723),进而使原胶层720形成图案化掩膜层725。115.图6b中,由于掩膜件200的凸起204(第一区域101)的磁场强度大于凹部203(第二区域102)的磁场强度,因此原胶层720内的逆磁粒子726受到第一排斥力作用后,原胶层720上与凸起204对应区域的逆磁粒子726,向与磁场较弱的凹部203对应的区域移动,逆磁粒子726移动过程中,会带动对应的胶体721移动,以使原胶层720与凸起204对应的区域变薄形成间隔区724,原胶层720与凹部203对应的部位向远离基体710方向凸起,形成凸部723a(掩膜部723),进而使原胶层720形成图案化掩膜层725。116.图6c中,由于掩膜件300的遮挡区311(第一区域101)的磁场强度大于镂空区312(第二区域102)的磁场强度,因此原胶层720内的逆磁粒子726受到第一排斥力作用后,原胶层720上与遮挡区311对应区域的逆磁粒子726,向与磁场较弱的镂空区312对应的区域移动,逆磁粒子726移动过程中,会带动对应的胶体721移动,以使原胶层720与遮挡区311对应的区域变薄形成间隔区724,原胶层720与镂空区312对应的部位向远离基体710方向凸起,形成凸部723a,进而使原胶层720形成图案化掩膜层725。117.图6d中,由于掩膜件400的电磁件420通电后产生磁场,进而使得掩膜板410具有磁性,而且凸起411(第一区域101)的磁场强度大于凹部412(第二区域102)的磁场强度,因此原胶层720内的逆磁粒子726受到第一排斥力作用后,原胶层720上与凸起411对应区域的逆磁粒子726,向与磁场较弱的凹部412对应的区域移动,逆磁粒子726移动过程中,会带动对应的胶体721移动,以使原胶层720与凸起411对应的区域变薄形成间隔区724,原胶层720与凹部412对应的部位向远离基体710方向凸起,形成凸部723a(掩膜部723),进而使原胶层720形成图案化掩膜层725。118.图6e中,由于掩膜件500的电磁件520通电后产生磁场,进而使得掩膜板510具有磁性,而且遮挡区511(第一区域101)的磁场强度大于镂空区512(第二区域102)的磁场强度,因此原胶层720内的逆磁粒子726受到第一排斥力作用后,原胶层720上与遮挡区511对应区域的逆磁粒子726,向与磁场较弱的镂空区512对应的区域移动,逆磁粒子726移动过程中,会带动对应的胶体721移动,以使原胶层720与遮挡区511对应的区域变薄形成间隔区724,原胶层720与镂空区512对应的部位向远离基体710方向凸起,形成凸部723a(掩膜部723),进而使原胶层720形成图案化掩膜层725。119.图6f中,由于掩膜件600的电磁件620通电后产生磁场,进而使得掩膜板610具有磁性,而且第一区域101的磁场强度大于第二区域102的磁场强度,因此逆磁粒子726受到第一排斥力作用后,原胶层720上与第一区域101对应区域的逆磁粒子726,向与磁场较弱的第二区域102对应的区域移动,逆磁粒子726移动过程中,会带动对应的胶体721移动,以使原胶层720与第一区域101对应的区域变薄形成间隔区724,原胶层720与第二区域102对应的部位向远离基体710方向凸起,形成凸部723a(掩膜部723),进而使原胶层720形成图案化掩膜层725。120.参阅图7a和图7b,图7a和图7b是图2中所示微纳层结构的制作方法中掩膜件与基板相对的另一种结构示意图。本实施例中,图7a中的掩膜件为图3a中的掩膜件,图7b中的掩膜件为图3f中的掩膜件。在其他实施例中,其中位于基板700上方的掩膜件也可以采用图3b至图3e中任一个所示的掩膜件。位于基板700下方的掩膜件也可以采用图3b至图3e中任一个所示的掩膜件。121.参阅图8a和图8b,图8a和图8b是对应图7a和图7b中掩膜件利用磁场使得基板形成掩膜部示意图。122.另一种实施例中,掩膜件的数量为两个;磁性粒子为逆磁粒子。步骤s12具体包括:将掩膜件与基板相对,第一区域的磁性力驱动与第一区域对应的磁性粒子移动的步骤包括:将基板放置于两个掩膜件之间,以使原胶层与其中一个掩膜件相对,基体与其中另一个掩膜件相对;其中一个掩膜件的第一区域的第一排斥力、以及另一个掩膜件的第一区域的第二排斥力,驱动与第一区域对应的磁性粒子移动。123.两个掩膜件的第二区域102的磁场强度虽然较小,但是也有可能会产生作用于逆磁粒子726的上述第二磁性力,其中一个掩膜件的第二区域102对原胶层720中的逆磁粒子726产生的第三排斥力,另一个掩膜件的第二区域102对原胶层720中的逆磁粒子726产生第四排斥力,第二磁性力包括第三排斥力和第四排斥力。但是第三排斥力远小于第一排斥力,第四排斥力远小于第二排斥力,第三排斥力和第四排斥力可以趋近于0,第一排斥力、第二排斥力、第三排斥力和第四排斥力同时产生。因此第二磁性力远小于第一磁性力,使得第一区域101对应的逆磁粒子726可以快速移动至与第二区域102对应,从而加快制备效率。第一排斥力为第三排斥力的5倍至200倍之间,第二排斥力为第四排斥力的5倍至200倍之间。124.本实施例中,第一排斥力为第三排斥力的100倍,第二排斥力为第四排斥力的100倍。在其他实施例中,第一排斥力为第三排斥力的5倍、10倍、20倍、40倍、70倍、80倍、110倍、200倍等,第二排斥力为第四排斥力的5倍、10倍、20倍、40倍、70倍、80倍、110倍、200倍等。125.第一排斥力和第二排斥力驱动逆磁粒子726移位,使得原胶层720形成凸部723a和凹陷部,以使原胶层720形成图案化掩膜层725,凸部723a即为掩膜部723。也就是说,此时的磁性粒子722为逆磁粒子726,第一磁性力包括第一排斥力和第二排斥力,凸部723a形成于原胶层720与第二区域102对应的区域。126.因磁性粒子为逆磁粒子726,掩膜件的磁场对位于其中的逆磁粒子726产生第一排斥力和第二排斥力。由于掩膜件的第一区域101的磁场强度大于第二区域102的磁场强度,因此逆磁粒子726受到第一排斥力和第二排斥力作用后,原胶层720上与第一区域101对应区域的逆磁粒子726,向与磁场较弱的第二区域102对应的区域移动,逆磁粒子726移动过程中,会带动对应的胶体721移动,以使原胶层720与第一区域101对应的区域变薄形成间隔区724,原胶层720与第二区域102对应的部位向远离基体710方向凸起,形成凸部723a,进而使原胶层720形成图案化掩膜层725。127.步骤s12更具体的如下:将基板700放置于两个掩膜件之间,使得基板700的原胶层720与其中一个掩膜件相对,基板700的基体710与另一个掩膜件相对。然后将两个掩膜件均朝向基板700方向移动,当位于基板700上方的掩膜件与基板700之间的距离为第一预设距离时,停止移动上方的掩膜件;当位于基板700下方的掩膜件与基板700之间的距离为第二预设距离时,停止移动位于基板700下方的掩膜件。以使一个掩膜件的第一区域101对原胶层720中的逆磁粒子产生第一排斥力;另一个掩膜件的第一区域101对原胶层720中的逆磁粒子产生第二排斥力;第一排斥力和第二排斥力驱动逆磁粒子移位,使得原胶层720与第二区域102对应的区域形成凸部723a,以使原胶层720形成图案化掩膜层725。128.与原胶层720相对的掩膜件与基板700之间的第一预设距离依据后续形成的凸部723a的高度确定,以凸部723a不与掩膜件相接触为基准进行设置。也就是图中位于基板700上方的掩膜件与基板700之间的第一预设距离,依据凸部723a的高度确定,此处第一预设距离指的是:基体710面对原胶层720的表面与掩膜件朝向基板700的表面之间的距离。例如,凸部723a的高度为3毫米,具体为凸部723a最高点与基体710面对原胶层720的表面之间的距离为3毫米。那么则设置上方的掩膜件移动至与基板700之间的距离为3毫米以上即可,具体可以设置为4毫米、5毫米、7毫米等等。129.与基体710相对的掩膜件与基板700之间的第二预设距离以基体710不与掩膜件接触为准。也就是说,位于基板700下方的掩膜件与基板700之间的第二预设距离,以二者不接触为准。此处第二预设距离指的是:基体710背对原胶层720的表面,与位于基板700下方的掩膜件面对基板700的表面之间的距离。为便于控制,设置第二预设距离为2毫米、3毫米、4毫米等等。130.本实施例中,掩膜件的磁感应强度范围介于0.1特斯拉至50特斯拉之间。例如,掩膜件的磁感应强度为0.1特斯拉、5特斯拉、10特斯拉、15特斯拉、25特斯拉、35特斯拉、45特斯拉或者50特斯拉等。131.掩膜件的磁感应强度介于上述范围内,能够确保掩膜件对磁性粒子产生足够的排斥力,确保凸部723a的顺利形成,又能使得凸部723a的厚度保持在蚀刻后能形成合适的微纳结构的范围内。避免掩膜件的磁感应强度不合适,导致凸部723a厚度不够,可能会出现后续蚀刻不到基体而导致未能加工成微纳结构的情况;或者,导致凸部723a厚度过厚,可能会出现后续蚀刻的微纳结构过深的情况。132.原胶层720的胶体721的粘度范围介于1帕斯卡秒(pa·s)至00帕斯卡秒(pa·s)之间。例如原胶层720的胶体721的粘度为1帕斯卡秒、5帕斯卡秒、10帕斯卡秒、20帕斯卡秒、帕斯卡秒、500帕斯卡秒、2000帕斯卡秒、4000帕斯卡秒、6000帕斯卡秒、8000帕斯卡秒、00帕斯卡秒等。133.原胶层720的胶体721的粘度处于上述范围内,能够使得凸部723a顺利成形,且厚度保持在能够蚀刻成图案的范围内。避免导致凸部723a成形失败,或者是即使成形了,但是凸部723a的厚度不合适。134.本实施例中,一个掩膜件与基板700的原胶层720相对,具体将一个掩膜件与原胶层720背离基体710的表面相对,另一个掩膜件与基板700的基体710相对,具体将另一个掩膜件与基体710背对原胶层720的表面相对,且两个掩膜件各自的第一区域101相对,两个掩膜件各自的第二区域102相对,从而使得两个掩膜件均可以对逆磁粒子726产生排斥力,二者共同作用,排斥力更强,使得逆磁粒子更快速的从与第一区域101对应的区域移动至与第二区域102对应的区域,以使凸部723a快速形成,从而加快生产进度。135.图8a中,由于两个掩膜件100的遮挡区106(第一区域101)的磁场强度大于镂空区105(第二区域102)的磁场强度,因此原胶层720内的逆磁粒子726受到上方的掩膜件100施加的第一排斥力,以及受到下方的掩膜件100施加的第二排斥力作用后,原胶层720上与两个掩膜件100的遮挡区106对应区域的逆磁粒子726,向与磁场较弱的两个掩膜件100的镂空区105对应的区域移动,逆磁粒子726移动过程中,会带动对应的胶体721移动,以使原胶层720与两个掩膜件100的遮挡区106对应的区域变薄形成间隔区724,原胶层720与两个掩膜件100的镂空区105对应的部位向远离基体710方向凸起,形成凸部723a,进而使原胶层720形成图案化掩膜层725。136.图8b中,电磁件620通电后使得掩膜板610磁化且形成磁场,掩膜件600的第一区域101的磁场强度大于第二区域102的磁场强度,因此原胶层720内的逆磁粒子726受到上方的掩膜件600施加的第一排斥力,以及受到下方的掩膜件600施加的第二排斥力作用后,原胶层720上与两个掩膜件600的第一区域101对应区域的逆磁粒子726,向与磁场较弱的两个掩膜件600的第二区域102对应的区域移动,逆磁粒子726移动过程中,会带动对应的胶体721移动,以使原胶层720与两个掩膜件600的第一区域101对应的区域变薄形成间隔区724,原胶层720与两个掩膜件600的第二区域102对应的部位向远离基体710方向凸起,形成凸部723a,进而使原胶层720形成图案化掩膜层725。137.参阅图9a、图9b、图9c、图9d、图9e及图9f,图9a至图9f是图2中所示微纳层结构的制作方法中掩膜件与基板相对的又一种结构示意图。图9a至图9f中的掩膜件分别对应图3a至图3f中的掩膜件。138.参阅图10a、图10b、图10c、图10d、图10e及图10f,图10a和图10f是对应图9a至图9f中掩膜件利用磁场使得基板形成掩膜部的示意图。139.又一种实施例中,磁性粒子722为顺磁粒子727。步骤s12具体包括:第一区域101对顺磁粒子727产生吸附力,吸附力驱动顺磁粒子727向与第一区域101对应的区域移动,形成与第一区域101对应的掩膜部723,以及形成与第二区域102对应的间隔区724。其中,掩膜部723为向远离基体凸出的凸部723a,间隔区724为向靠近基体下凹的凹陷部。凸部723a的厚度大于凹陷部。140.第一区域101产生的吸附力称为第一吸附力,第一吸附力驱动顺磁粒子727移位,使得原胶层720形成凸部723a和凹陷部,凸部723a即为掩膜部723,以使原胶层720形成图案化掩膜层725。也就是说,此时磁性粒子722为顺磁粒子727,第一区域101产生的磁性力称为第一磁性力,第一磁性力为第一吸附力,凸部723a形成于原胶层720与第一区域101对应的区域。141.第二区域102的磁场强度虽然较小,但是也有可能会产生作用于顺磁粒子727的第二磁性力,第二磁性力为第二吸附力,但是第二吸附力会远小于第一吸附力,且第二吸附力趋近于0。使得第二区域102对应的顺磁粒子727可以快速移动至与第一区域101对应,从而加快制备效率。142.第一吸附力为第二吸附力的5倍至200倍之间。本实施例中,第一吸附力为第二吸附力的100倍。在其他实施例中,第一吸附力为第二吸附力的5倍、10倍、20倍、40倍、70倍、80倍、110倍、200倍等。143.可以理解,第一区域101的中心部的吸附力最大,顺磁粒子727会趋向于向与第一区域101的中心部对应的位置处移动,因此,最终形成的凸部723a的截面为从中部向两边高度逐渐降低的形状,类似为凸出的弧形。144.步骤s12更具体包括:将基板700放置于掩膜件下方,且使得原胶层720位于掩膜件下方。然后将掩膜件朝向基板700方向移动,当掩膜件与基板700之间的距离为预设距离时,停止移动掩膜件;以使第一区域101对原胶层720中的顺磁粒子产生第一吸附力;第一吸附力驱动逆磁粒子移位,使得原胶层720与第一区域101对应的区域形成凸部723a,以使原胶层720形成图案化掩膜层725。145.预设距离依据后续形成的凸部723a的高度确定,以凸部723a不与掩膜件相接触为基准进行设置。具体的预设距离参考上述实施例,不再赘述。146.因磁性粒子为顺磁粒子727,掩膜件的磁场对位于其中的顺磁粒子727产生第一吸附力。由于掩膜件的第一区域101的磁场强度大于第二区域102的磁场强度,因此顺磁粒子727受到第一吸附力作用后,原胶层720上与第二区域102对应区域的顺磁粒子727,向与磁场较强的第一区域101对应的区域移动,顺磁粒子727移动过程中,会带动对应的胶体721移动,以使原胶层720与第二区域102对应的区域变薄形成间隔区724,原胶层720与第一区域101对应的部位向远离基体710方向凸起,形成凸部723a,进而使原胶层720形成图案化掩膜层725。147.本实施例中,掩膜件的磁感应强度范围介于0.1特斯拉至50特斯拉之间。例如,掩膜件的磁感应强度为0.1特斯拉、5特斯拉、10特斯拉、15特斯拉、25特斯拉、35特斯拉、45特斯拉或者50特斯拉等。148.掩膜件的磁感应强度介于上述范围内,能够确保掩膜件对磁性粒子产生足够的吸附力,确保凸部723a的顺利形成,又能使得凸部723a的厚度保持在蚀刻后能形成合适的微纳结构的范围内。避免掩膜件的磁感应强度不合适,导致凸部723a厚度不够,可能会出现后续蚀刻不到基体而导致未能加工成微纳结构的情况;或者,导致凸部723a厚度过厚,可能会出现后续蚀刻的微纳结构过深的情况。149.原胶层720的胶体721的粘度范围介于1帕斯卡秒(pa·s)至00帕斯卡秒(pa·s)之间。例如原胶层720的胶体721的粘度为1帕斯卡秒、5帕斯卡秒、10帕斯卡秒、20帕斯卡秒、帕斯卡秒、500帕斯卡秒、2000帕斯卡秒、4000帕斯卡秒、6000帕斯卡秒、8000帕斯卡秒、00帕斯卡秒等。150.原胶层720的胶体721的粘度处于上述范围内,能够使得凸部723a顺利成形,且厚度保持在能够蚀刻成图案的范围内。避免导致凸部723a成形失败,或者是即使成形了,但是凸部723a的厚度不合适。151.本实施例中,掩膜件与基板700的原胶层720相对,具体将掩膜件与原胶层720背离基体710的表面相对,以使掩膜件与原胶层720之间的距离更近,但是掩膜件未与原胶层接触,使得吸附力更好的作用于磁性粒子,以使凸部723a快速形成,从而加快生产进度。152.图10a中,由于掩膜件100的遮挡区106(第一区域101)的磁场强度大于镂空区105(第二区域102)的磁场强度,因此原胶层720内的顺磁粒子727受到第一吸附力作用后,原胶层720上与镂空区105对应区域的顺磁粒子727,向与磁场较强的遮挡区106对应的区域移动,顺磁粒子727移动过程中,会带动对应的胶体721移动,以使原胶层720与镂空区105对应的区域变薄形成间隔区724,原胶层720与遮挡区106对应的部位向远离基体710方向凸起,形成凸部723a,进而使原胶层720形成图案化掩膜层725。153.图10b中,由于掩膜件200的凸起204(第一区域101)的磁场强度大于凹部203(第二区域102)的磁场强度,因此原胶层720内的顺磁粒子727受到第一吸附力作用后,原胶层720上与凹部203对应区域的顺磁粒子727,向与磁场较强的凸起204对应的区域移动,顺磁粒子727移动过程中,会带动对应的胶体721移动,以使原胶层720与凹部203对应的区域变薄形成间隔区724,原胶层720与凸起204对应的部位向远离基体710方向凸起,形成凸部723a,进而使原胶层720形成图案化掩膜层725。154.图10c中,由于掩膜件300的遮挡区311(第一区域101)的磁场强度大于镂空区312(第二区域102)的磁场强度,因此原胶层720内的顺磁粒子727受到第一吸附力作用后,原胶层720上与镂空区312对应区域的顺磁粒子727,向与磁场较强的遮挡区311对应的区域移动,顺磁粒子727移动过程中,会带动对应的胶体721移动,以使原胶层720与镂空区312对应的区域变薄形成间隔区724,原胶层720与遮挡区311对应的部位向远离基体710方向凸起,形成凸部723a,进而使原胶层720形成图案化掩膜层725。155.图10d中,由于掩膜件400的凸起411(第一区域101)的磁场强度大于凹部412(第二区域102)的磁场强度,因此原胶层720内的顺磁粒子727受到第一吸附力作用后,原胶层720上与凹部412对应区域的顺磁粒子727,向与磁场较强的凸起411对应的区域移动,顺磁粒子727移动过程中,会带动对应的胶体721移动,以使原胶层720与凹部412对应的区域变薄形成间隔区724,原胶层720与凸起411对应的部位向远离基体710方向凸起,形成凸部723a,进而使原胶层720形成图案化掩膜层725。156.图10e中,由于掩膜件500的遮挡区511(第一区域101)的磁场强度大于镂空区512(第二区域102)的磁场强度,因此原胶层720内的顺磁粒子727受到第一吸附力作用后,原胶层720上与镂空区512对应区域的顺磁粒子727,向与磁场较强的遮挡区511对应的区域移动,顺磁粒子727移动过程中,会带动对应的胶体721移动,以使原胶层720与镂空区512对应的区域变薄形成间隔区724,原胶层720与遮挡区511对应的部位向远离基体710方向凸起,形成凸部723a,进而使原胶层720形成图案化掩膜层725。157.图10f中,由于掩膜件600的第一区域101的磁场强度大于第二区域102的磁场强度,因此原胶层720内的顺磁粒子727受到第一吸附力作用后,原胶层720上与第二区域102对应区域的顺磁粒子727,向与磁场较弱的第一区域101对应的区域移动,顺磁粒子727移动过程中,会带动对应的胶体721移动,以使原胶层720与第二区域102对应的区域变薄形成间隔区724,原胶层720与第一区域101对应的部位向远离基体710方向凸起,形成凸部723a,进而使原胶层720形成图案化掩膜层725。158.参阅图11a和图11b,图11a和图11b是图2中所示微纳层结构的制作方法中掩膜件与基板相对的再一种结构示意图。图11a和图11b中的掩膜件分别对应图3a和图3b中的掩膜件。在其他实施例中,也可以采用图3c至图3f中的掩膜件。159.参阅图12a和图12b,图12a和图12b是对应图11a和图11b中掩膜件利用磁场使得基板形成掩膜部的示意图。160.本技术再一种实施例中,基板700a包括基板700a包括基体710a以及设于基体710a上的原胶层720a,原胶层720a包括胶体721a和磁性粒子722a,磁性粒子722a为逆磁粒子或者顺磁粒子。磁性粒子722a掺杂在胶体721a内。逆磁粒子为金、银、铜和铅等中的一种或者多种制成。逆磁粒子位于磁场中时,会向磁场较弱的区域或者是没有磁场的区域逃离。顺磁粒子为四氧化三铁、铁、钴、镍中一种或者多种制成,顺磁粒子位于磁场中时,会趋向于向磁场较强的区域移动。161.也就是说,基板700a与上述实施例中的基板700结构基本相同,区别在于原胶层700a的粘度范围不相同,下面会详述。162.步骤s12具体包括:图案化原胶层720a,第一区域101对逆磁粒子726a产生排斥力,排斥力驱动逆磁粒子726a向与第二区域102对应的区域移动,形成与第二区域102对应的掩膜部723b,以及形成与第一区域101对应的间隔区724b。掩膜部723b为磁粒子聚集部,间隔区724b为磁粒子稀疏部;磁粒子聚集部处的磁性粒子密集度大于磁粒子稀疏部的磁性粒子密集度。将掩膜件与基板700a相对,第一区域101产生的第一磁性力为第一排斥力;第二区域102产生的第二磁性力为第二排斥力,其中第二排斥力小于第一排斥力,且第二排斥力趋近于0。163.第一区域101产生的排斥力称为第一排斥力,第一排斥力驱动逆磁粒子726a移位,使得原胶层720a形成掩膜部723b(磁粒子聚集部)和间隔区724b(磁粒子稀疏部),以使原胶层720a形成图案化掩膜层725a。也就是说,此时的磁性粒子722a为逆磁粒子726a,第一磁性力为第一排斥力,掩膜部723b形成于原胶层720a与第二区域102对应的区域。掩膜部723b相较于原来的原胶层720a厚度不变,但是其逆磁粒子726a数量增多,也就是说,逆磁粒子726a聚集在掩膜部723b处。164.第二区域102的磁场强度虽然较小,但是也有可能会产生作用于逆磁粒子726a的第二磁性力,第二磁性力为第二排斥力,其中,第二排斥力小于第一排斥力,且第二排斥力可以趋近于0。使得第一区域101对应的逆磁粒子726a可以快速移动至与第二区域102对应,从而加快制备效率。第一排斥力为第二排斥力的5倍至200倍之间。本实施例中,第一排斥力为第二排斥力的100倍。在其他实施例中,第一排斥力为第二排斥力的5倍、10倍、20倍、40倍、70倍、80倍、110倍、200倍等。165.步骤s12更具体的包括:将基板700a放置于掩膜件下方,且使得原胶层720a位于掩膜件下方。然后将掩膜件朝向基板700a方向移动,当掩膜件与基板700a之间的距离为预设距离时,停止移动掩膜件;以使第一区域101对原胶层720a中的逆磁粒子产生第一排斥力;第一排斥力驱动逆磁粒子移位,使得原胶层720a与第二区域102对应的区域形成掩膜部723b,以使原胶层720a形成图案化掩膜层725a。166.预设距离依据后续形成的掩膜部723b的高度确定,以掩膜部723b不与掩膜件相接触为基准进行设置。也就是图中位于基板700a上方的掩膜件与基板700a之间的预设距离,依据掩膜部723b的高度确定,此处预设距离指的是:基体710a面对原胶层720a的表面与掩膜件朝向基板700a的表面之间的距离。例如,掩膜部723b的高度为3毫米,具体为掩膜部723b背离基体710a的表面,与基体710a面对原胶层720a的表面之间的距离为3毫米。那么则设置上方的掩膜件a移动至与基板700a之间的距离为3毫米以上即可,具体可以设置为4毫米、5毫米、7毫米等等。167.本实施例中,磁性粒子为逆磁粒子726a,掩膜件的磁场对位于其中的逆磁粒子726a产生第一排斥力。由于掩膜件的第一区域101的磁场强度大于第二区域102的磁场强度,因此逆磁粒子726a受到第一排斥力作用后,原胶层720a上与第一区域101对应区域的逆磁粒子726a,向与磁场较弱的第二区域102对应的区域移动,原胶层720a与第一区域101对应的区域逆磁粒子726a数量减少,形成间隔区724b,原胶层720a与第二区域102对应的区域逆磁粒子726a聚集起来,形成掩膜部723b,进而使原胶层720a形成图案化掩膜层725a。间隔区724b处的逆磁粒子726a数量较少,且排布密集度较低,甚至于没有逆磁粒子726a。掩膜部723b的厚度与间隔区724b的厚度相等。168.本实施例中,掩膜件的磁感应强度范围介于0.01特斯拉至5特斯拉之间。例如,掩膜件的磁感应强度为0.01特斯拉、0.5特斯拉、1特斯拉、2特斯拉、2.5特斯拉、3特斯拉、4特斯拉或者5特斯拉等。169.掩膜件的磁感应强度介于上述范围内,能够确保掩膜件对磁性粒子产生足够的吸附力,确保掩膜部723b的顺利形成,又能使得掩膜部723b的逆磁粒子726a的密集度保持在蚀刻后能形成合适的微纳结构的范围内。避免掩膜件的磁感应强度不合适,导致掩膜部723b处逆磁粒子726a的密集度不够,可能会出现后续蚀刻不到基体而导致未能加工成微纳结构的情况;或者,导致掩膜部723b处逆磁粒子726a过于密集,可能会出现后续蚀刻的微纳结构过深的情况。170.原胶层720a的胶体721a的粘度范围介于0.001帕斯卡秒(pa·s)至帕斯卡秒(pa·s)之间。例如原胶层720a的胶体721a的粘度为0.001帕斯卡秒、5帕斯卡秒、10帕斯卡秒、20帕斯卡秒、30帕斯卡秒、40帕斯卡秒、50帕斯卡秒、60帕斯卡秒、70帕斯卡秒、80帕斯卡秒、帕斯卡秒等。171.原胶层720a的胶体721a的粘度处于上述范围内,能够使得掩膜部723b顺利成形,且逆磁粒子726a的密集度保持在能够蚀刻成图案的范围内。避免导致掩膜部723b成形失败,或者是即使成形了,但是掩膜部723b的磁性粒子密集度不合适。172.本实施例利用逆磁粒子726a密集程度区分掩膜部723b和间隔区724b,掩膜部723b和间隔区724b的厚度相等,且均与原胶层720a为形成掩膜部723b和间隔区724b之前的厚度一致。且在形成掩膜部723b的过程中,掩膜件未与原胶层720a接触,增加了产品清洁度,提升了成品率。173.图12a中,由于掩膜件100的遮挡区106(第一区域101)的磁场强度大于镂空区105(第二区域102)的磁场强度,因此原胶层720a内的逆磁粒子726a受到第一排斥力作用后,原胶层720a上与遮挡区106对应区域的逆磁粒子726a,向与磁场较弱的镂空区105对应的区域移动,以使原胶层720a与遮挡区106对应的区域逆磁粒子726a数量减少,从而形成间隔区724b,原胶层720a与镂空区105对应的区域逆磁粒子726a数量增多,从而形成掩膜部723b,进而使原胶层720a形成图案化掩膜层725a。174.图12b中,由于掩膜件200的凸起204(第一区域101)的磁场强度大于凹部203(第二区域102)的磁场强度,因此原胶层720a内的逆磁粒子726a受到第一排斥力作用后,原胶层720a上与凸起204对应区域的逆磁粒子726a,向与磁场较弱的凹部203对应的区域移动,以使原胶层720a与凸起204对应的区域逆磁粒子726a数量减少,从而形成间隔区724b,原胶层720a与凹部203对应的区域逆磁粒子726a数量增多,从而形成掩膜部723b,进而使原胶层720a形成图案化掩膜层725a。175.参阅图13a和图13b,图13a和图13b是图2中所示微纳层结构的制作方法中掩膜件与基板相对的另一种结构示意图。本实施例中,图13a和图13b中的掩膜件分别对应图3a和图3b中的掩膜件。在其他实施例中,也可以采用图3c至图3f中的掩膜件。176.参阅图14a和图14b,图14a和图14b是对应图13a和图13b中掩膜件利用磁场使得基板形成掩膜部的示意图。177.本技术另一种实施例中,掩膜件的数量为两个;磁性粒子722a为逆磁粒子726a。步骤s12具体:包括:将掩膜件与基板相对,第一区域的磁性力驱动与第一区域对应的磁性粒子移动的步骤包括:将基板放置于两个掩膜件之间,以使原胶层与其中一个掩膜件相对,基体与其中另一个掩膜件相对;其中一个掩膜件的第一区域的第一排斥力、以及另一个掩膜件的第一区域的第二排斥力,驱动与第一区域对应的磁性粒子移动。178.两个掩膜件的第二区域102的磁场强度虽然较小,但是也有可能会产生作用于逆磁粒子726a的第二磁性力,其中一个掩膜件的第二区域102对原胶层720a中的逆磁粒子726a产生的第三排斥力,另一个掩膜件的第二区域102对原胶层720a中的逆磁粒子726a产生第四排斥力,第二磁性力包括第三排斥力和第四排斥力。但是第三排斥力远小于第一排斥力,第四排斥力远小于第二排斥力,第三排斥力和第四排斥力可以趋近于0,第一排斥力、第二排斥力、第三排斥力和第四排斥力同时产生。因此第二磁性力远小于第一磁性力,使得第一区域101对应的逆磁粒子726a可以快速移动至与第二区域102对应,从而加快制备效率。第一排斥力为第三排斥力的5倍至200倍之间,第二排斥力为第四排斥力的5倍至200倍之间。179.本实施例中,第一排斥力为第三排斥力的100倍,第二排斥力为第四排斥力的100倍。在其他实施例中,第一排斥力为第三排斥力的5倍、10倍、20倍、40倍、70倍、80倍、110倍、200倍等,第二排斥力为第四排斥力的5倍、10倍、20倍、40倍、70倍、80倍、110倍、200倍等。180.第一排斥力和第二排斥力驱动逆磁粒子726a移位,使得原胶层720a形成掩膜部723b(磁粒子密集部)和间隔区724b(磁粒子稀疏部),以使原胶层720a形成图案化掩膜层725a。也就是说,此时的磁性粒子722a为逆磁粒子726a,第一磁性力包括第一排斥力和第二排斥力,掩膜部723b形成于原胶层720a与第二区域102对应的区域。掩膜部723b相较于原来的原胶层720a厚度不变,但是其逆磁粒子726a数量增多,也就是说,逆磁粒子726a聚集在掩膜部723b处。181.具体的,因磁性粒子为逆磁粒子726a,掩膜件的磁场对位于其中的逆磁粒子726a产生第一排斥力和第二排斥力。由于掩膜件的第一区域101的磁场强度大于第二区域102的磁场强度,因此逆磁粒子726a受到第一排斥力和第二排斥力作用后,原胶层720a上与第一区域101对应区域的逆磁粒子726a,向与磁场较弱的第二区域102对应的区域移动,原胶层720a与第一区域101对应的区域逆磁粒子726a数量减少,形成间隔区724b,原胶层720a与第二区域102对应的区域逆磁粒子726a聚集起来,形成掩膜部723b,进而使原胶层720a形成图案化掩膜层725a。间隔区724b处的逆磁粒子726a数量较少,且排布密集度较低,甚至于没有逆磁粒子726a。182.步骤s12更具体的步骤如下:将基板700a放置于两个掩膜件之间,使得基板700a的原胶层720a与其中一个掩膜件相对,基板700a的基体710a与另一个掩膜件相对。将两个掩膜件均朝向基板700a方向移动,当位于基板700a上方的掩膜件与基板700a之间的距离为第一预设距离时,停止移动上方的掩膜件;当位于基板700a下方的掩膜件与基板700a之间的距离为第二预设距离时,停止移动位于基板700a下方的掩膜件;以使上方的掩膜件的第一区域101对原胶层720a中的逆磁粒子产生第一排斥力;下方的另一个掩膜件的第一区域101对原胶层720a中的逆磁粒子产生第二排斥力;第一排斥力和第二排斥力驱动逆磁粒子移位,使得原胶层720a与第二区域102对应的区域形成掩膜部723b,以使原胶层720a形成图案化掩膜层725a。183.与原胶层720a相对的掩膜件与基板700a之间的第一预设距离依据形成的掩膜部723b的高度确定,以掩膜部723b不与掩膜件相接触为基准进行设置。也就是图中位于基板700上方的掩膜件与基板700a之间的第一预设距离,依据掩膜部723b的高度确定,此处第一预设距离指的是:基体710a面对原胶层720a的表面与掩膜件朝向基板700a的表面之间的距离。例如,掩膜部723b的高度为3毫米,具体为掩膜部723b背离基体710a一侧表面与基体710a面对原胶层720a的表面之间的距离为3毫米。那么则设置上方的掩膜件移动至与基板700a之间的距离为3毫米以上即可,具体可以设置为4毫米、5毫米、7毫米等等。184.与基体710a相对的掩膜件与基板700a之间的第二预设距离以基体710a不与掩膜件接触为准。也就是说,位于基板700a下方的掩膜件与基板700a之间的第二预设距离,以二者不接触为准。此处第二预设距离指的是:基体710a背对原胶层720a的表面,与位于基板700a下方的掩膜件面对基板700a的表面之间的距离。为便于控制,设置第二预设距离为2毫米、3毫米、4毫米等等。185.本实施例中,掩膜件的磁感应强度范围介于0.01特斯拉至5特斯拉之间。例如,掩膜件的磁感应强度为0.01特斯拉、0.5特斯拉、1特斯拉、2特斯拉、2.5特斯拉、3特斯拉、4特斯拉或者5特斯拉等。186.掩膜件的磁感应强度介于上述范围内,能够确保掩膜件对磁性粒子产生足够的吸附力,确保掩膜部723b的顺利形成,又能使得掩膜部723b的逆磁粒子726a的密集度保持在蚀刻后能形成合适的微纳结构的范围内。避免掩膜件的磁感应强度不合适,导致掩膜部723b处逆磁粒子726a的密集度不够,可能会出现后续蚀刻不到基体而导致未能加工成微纳结构的情况;或者,导致掩膜部723b处逆磁粒子726a过于密集,可能会出现后续蚀刻的微纳结构过深的情况。187.原胶层720a的胶体721a的粘度范围介于0.001帕斯卡秒(pa·s)至帕斯卡秒(pa·s)之间。例如原胶层720a的胶体721a的粘度为0.001帕斯卡秒、5帕斯卡秒、10帕斯卡秒、20帕斯卡秒、30帕斯卡秒、40帕斯卡秒、50帕斯卡秒、60帕斯卡秒、70帕斯卡秒、80帕斯卡秒、帕斯卡秒等。188.原胶层720a的胶体721a的粘度处于上述范围内,能够使得掩膜部723b顺利成形,且逆磁粒子726a的密集度保持在能够蚀刻成图案的范围内。避免导致掩膜部723b成形失败,或者是即使成形了,但是掩膜部723b的磁性粒子密集度不合适。189.本实施例中,一个掩膜件与基板700a的原胶层720a相对,具体将一个掩膜件与原胶层720a背离基体710a的表面相对,另一个掩膜件与基板700a的基体710a相对,具体将另一个掩膜件与基体710a背对原胶层720a的表面相对,且两个掩膜件各自的第一区域101相对,两个掩膜件各自的第二区域102相对,从而使得两个掩膜件均可以对逆磁粒子726a产生排斥力,二者共同作用,排斥力更强,使得逆磁粒子726a更快速的从与第一区域101对应的区域移动至与第二区域102对应的区域,以使掩膜部723b快速形成,从而加快生产进度。190.图14a中,由于掩膜件100的遮挡区106(第一区域101)的磁场强度大于镂空区105(第二区域102)的磁场强度,因此原胶层720a内的逆磁粒子726a受到第一排斥力和第二排斥力作用后,原胶层720a上与遮挡区106对应区域的逆磁粒子726a,向与磁场较弱的镂空区105对应的区域移动,以使原胶层720a与遮挡区106对应的区域逆磁粒子726a数量减少,从而形成间隔区724b,原胶层720a与镂空区105对应的区域逆磁粒子726a数量增多,从而形成掩膜部723b,进而使原胶层720a形成图案化掩膜层725a。191.图14b中,由于掩膜件200的凸起204(第一区域101)的磁场强度大于凹部203(第二区域102)的磁场强度,因此原胶层720a内的逆磁粒子726a受到第一排斥力和第二排斥力作用后,原胶层720a上与凸起204对应区域的逆磁粒子726a,向与磁场较弱的凹部203对应的区域移动,以使原胶层720a与凸起204对应的区域逆磁粒子726a数量减少,从而形成间隔区724b,原胶层720a与凹部203对应的区域逆磁粒子726a数量增多,从而形成掩膜部723b,进而使原胶层720a形成图案化掩膜层725a。192.参阅图15a和图15b,图15a和图15b是图2中所示微纳层结构的制作方法中掩膜件与基板相对的又一种结构示意图。图15a和图15b中的掩膜件分别对应图3a和图3b中的掩膜件。在其他实施例中,也可以采用图3c至图3f中的掩膜件。193.参阅图16a和图16b,图16a和图16b是对应图15a和图15b中掩膜件利用磁场使得基板形成掩膜部示意图。194.本技术又一种实施例中,磁性粒子722a为顺磁粒子727a。步骤s12具体包括:第一区域101对顺磁粒子727a产生吸附力,吸附力驱动顺磁粒子727a向与第一区域101对应的区域移动,形成与第一区域101对应的掩膜部723b,以及形成与第二区域102对应的间隔区724b。195.第一区域101产生的吸附力称为第一吸附力,第一吸附力驱动顺磁粒子727a移位,使得原胶层720a形成掩膜部723b和间隔区724b,以使原胶层720a形成图案化掩膜层725a。也就是说,此时的磁性粒子722a为顺磁粒子727a,第一磁性力为第一吸附力,掩膜部723b形成于原胶层720a与第一区域101对应的区域。掩膜部723b相较于原来的原胶层720a厚度不变,但是其顺磁粒子727a数量增多,也就是说,顺磁粒子727a聚集在掩膜部723b处。196.第二区域102的磁场强度虽然较小,但是也有可能会产生作用于顺磁粒子727a的第二磁性力,第二磁性力为第二吸附力,但是第二吸附力远小于第一吸附力,且第二吸附力趋近于0。使得第一区域101对应的顺磁粒子727a可以快速移动至与第一区域101对应,从而加快制备效率。第一吸附力为第二吸附力的5倍至200倍之间。本实施例中,第一吸附力为第二吸附力的100倍。在其他实施例中,第一吸附力为第二吸附力的5倍、10倍、20倍、30倍、40倍、70倍、80倍、110倍、200倍等。197.步骤s12更具体包括:将基板700a放置于掩膜件下方,且使得原胶层720a位于掩膜件下方。然后将掩膜件朝向基板700a方向移动,当掩膜件与基板700a之间的距离为预设距离时,停止移动掩膜件;以使第一区域101对原胶层720a中的逆磁粒子产生第一吸附力;第一吸附力驱动逆磁粒子移位,使得原胶层720a与第一区域101对应的区域形成掩膜部723b,以使原胶层720a形成图案化掩膜层725a。198.预设距离依据后续形成的掩膜部723b的高度确定,以掩膜部723b不与掩膜件相接触为基准进行设置。预设距离具体可参考上述的实施例进行设置,不再赘述。199.因磁性粒子为顺磁粒子727a,掩膜件的磁场对位于其中的顺磁粒子727a产生第一吸附力。由于掩膜件的第一区域101的磁场强度大于第二区域102的磁场强度,因此顺磁粒子727a受到第一吸附力作用后,原胶层720a上与第二区域102对应区域的顺磁粒子727a,向与磁场较强的第一区域101对应的区域移动,原胶层720a与第二区域102对应的区域顺磁粒子727a数量减少,形成间隔区724b,原胶层720a与第一区域101对应的区域顺磁粒子727a聚集起来,形成掩膜部723b,进而使原胶层720a形成图案化掩膜层725a。间隔区724b处的顺磁粒子727a数量较少,且排布密集度较低,甚至于没有顺磁粒子727a。200.本实施例中,掩膜件的磁感应强度范围介于0.01特斯拉至5特斯拉之间。例如,掩膜件的磁感应强度为0.01特斯拉、0.5特斯拉、1特斯拉、2特斯拉、2.5特斯拉、3特斯拉、4特斯拉或者5特斯拉等。201.掩膜件的磁感应强度介于上述范围内,能够确保掩膜件对磁性粒子产生足够的吸附力,确保掩膜部723b的顺利形成,又能使得掩膜部723b的顺磁粒子727a的密集度保持在蚀刻后能形成合适的微纳结构的范围内。避免掩膜件的磁感应强度不合适,导致掩膜部723b处逆磁粒子726a的密集度不够,可能会出现后续蚀刻不到基体而导致未能加工成微纳结构的情况;或者,导致掩膜部723b处逆磁粒子726a过于密集,可能会出现后续蚀刻的微纳结构过深的情况。202.原胶层720a的胶体721a的粘度范围介于0.001帕斯卡秒(pa·s)至帕斯卡秒(pa·s)之间。例如原胶层720a的胶体721a的粘度为0.001帕斯卡秒、5帕斯卡秒、10帕斯卡秒、20帕斯卡秒、30帕斯卡秒、40帕斯卡秒、50帕斯卡秒、60帕斯卡秒、70帕斯卡秒、80帕斯卡秒、帕斯卡秒等。203.原胶层720a的胶体721a的粘度处于上述范围内,能够使得掩膜部723b顺利成形,且顺磁粒子727a的密集度保持在能够蚀刻成图案的范围内。避免导致掩膜部723b成形失败,或者是即使成形了,但是掩膜部723b的磁性粒子密集度不合适。204.图16a中,由于掩膜件100的遮挡区106(第一区域101)的磁场强度大于镂空区105(第二区域102)的磁场强度,因此原胶层720a内的顺磁粒子727a受到第一吸附力作用后,原胶层720a上与镂空区105对应区域的顺磁粒子727a,向与磁场较强的遮挡区106对应的区域移动,以使原胶层720a与镂空区105对应的区域顺磁粒子727a数量减少,从而形成间隔区724b,原胶层720a与遮挡区106对应的区域顺磁粒子727a数量增多,从而形成掩膜部723b,进而使原胶层720a形成图案化掩膜层725a。205.图16b中,由于掩膜件200的凸起204(第一区域101)的磁场强度大于凹部203(第二区域102)的磁场强度,因此原胶层720a内的顺磁粒子727a受到第一吸附力作用后,原胶层720a上与凹部203对应区域的顺磁粒子727a,向与磁场较强的凸起204对应的区域移动,以使原胶层720a与凹部203对应的区域顺磁粒子727a数量减少,从而形成间隔区724b,原胶层720a与凸起204对应的区域顺磁粒子727a数量增多,从而形成掩膜部723b,进而使原胶层720a形成图案化掩膜层725a。206.步骤s13:以图案化掩膜层为掩膜,蚀刻基体,以使基体形成图案化的介质层。具体为:蚀刻图案化掩膜层,以使掩膜部被部分蚀刻,掩膜部之外的其他部位全部被蚀刻,且基体与其他部位对应的区域被蚀刻,以使基体形成图案化的介质层。此时,基体710上还残留有部分掩膜部。207.参阅图17a,图17a是图6a至图6f、图8a至图8b、图10a至图10f中形成的图案化掩膜层被刻蚀后的结构示意图。208.一种实施例中,步骤s13具体包括:以图案化掩膜层725为掩膜,对基体710进行蚀刻,具体的,将形成凸部723a的图案化掩膜层725整体进行蚀刻。由于图案化掩膜层725包括凸部723a(掩膜部723)和凹陷部(间隔区724),且凸部723a的厚度大于凹陷部(间隔区724)的厚度。在同样蚀刻时间前提下,凸部723a被蚀刻部分,间隔区724被全部蚀刻(蚀刻时,凸部723a和间隔区724的厚度同时降低),且蚀刻到基体710上,进而,基体710上与凸部723a对应的部分厚度大于与间隔区724对应部分的厚度,即在基体710上形成间隔的凸起部和凹槽,继而形成图案化的介质层730。蚀刻完成后,凸部723a被蚀刻了一部分,还剩下部分凸部723c,剩余的凸部723c的厚度小于凸部723a。其中,蚀刻采用干法蚀刻或者湿法蚀刻。209.参阅图17b,图17b是图12a至图12b、图14a至图14b、图16a至图16b中形成的图案化掩膜层被刻蚀后的结构示意图。210.另一种实施例中,步骤s13具体包括:以图案化掩膜层725a为掩膜,对基体710a进行蚀刻,具体的,将形成掩膜部723b的图案化掩膜层725a整体进行蚀刻。由于图案化掩膜层725包括掩膜部723b(掩膜部723)和间隔区724b,且掩膜部723b的处磁性粒子的密集度大于间隔区724b的磁性粒子的密集度。因此掩膜部723b出的硬度大于间隔区724b出的硬度。在同样蚀刻时间前提下,较硬的掩膜部723b被蚀刻部分,较软的间隔区724b被全部蚀刻,且蚀刻到基体710上,进而,基体710上与掩膜部723b对应的部分厚度大于与间隔区724b对应部分的厚度,即在基体710上形成间隔的凸起和凹部,继而形成图案化的介质层730。蚀刻完成后,掩膜部723b被蚀刻了一部分,还剩下部分掩膜部723d,剩余的掩膜部723d的厚度小于掩膜部723b。211.一并参阅图18,图18是图17a和图17b中的图案化的介质层上剩余的掩膜部被去除的结构示意图。212.步骤s14:去除图案化的介质层上剩余的图案化掩膜层以形成介质层730。具体可以采用氧等离子体轰击处理剩余的凸部723c或者剩余的掩膜部723d。介质层730可以用作图1中所示电子器件的介质层12。介质层730即为一种微纳层结构。213.本技术实施例提供的微纳层结构的制作方法,整个制作过程中,掩膜件不与原胶层接触,而是利用磁性力吸附或者排斥原胶层内的磁性粒子,从而进行图案化处理,掩膜件与原胶层不接触,因此加工清洁度较高,成品率得以提升。无接触加工还能适用于更小尺寸的图案加工,例如20纳米以下图案。另外,本技术实施例的制作方法相较于现有的制作方法,无需前烘、曝光、显影、后烘等步骤,过程比较简单,简化了制作步骤,提升了加工效率。214.以上,仅为本技术的部分实施例和实施方式,本技术的保护范围不局限于此,任何熟知本领域的技术人员在本技术揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本技术的保护范围之内。因此,本技术的保护范围应以权利要求的保护范围为准。

本文地址:https://www.jishuxx.com/zhuanli/20240726/123435.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 YYfuon@163.com 举报,一经查实,本站将立刻删除。