技术新讯 > 非变容式泵设备的制造及其应用技术 > 液体环式压缩机的制作方法  >  正文

液体环式压缩机的制作方法

  • 国知局
  • 2024-07-30 15:09:08

专利名称:液体环式压缩机的制作方法技术领域:本发明涉及一种压缩机,尤其地,本发明涉及一种液体环式压缩机。大多数压缩机以合适的绝热过程即在压缩过期没有热量交换进行工作。实际上,例如往复运动的压缩机散发出大量热量,但是只有小部分的热量在压缩期间散发出来,大部分的热量在压缩期间之后或者在结束阶段散发出来。透平压缩机常常具有非常接近绝热的过程。一些更加特殊的压缩机可以非常接近绝热地进行工作,即所产生的热量连续地导走,并且温度保持不变。这些例子是水驱动的喷射器和液体环式压缩机,在这里,这两者常常与真空一起使用。具有机油喷射的螺旋式压缩机工作起来多变,即在绝热和等温之间。与绝热相比,等温过程需要较少的供给能量。随着压力不同的增大,这种不同快速增大,如图1中的图线所示。这个示出了理论值,这些值是根据理想气体的公式对空气计算出来的。在没有接近临界点情况下,空气和气体非常接近理想。对于大多数物体而言,不希望具有压缩之后的热气体,从这点和能量消耗来看,等温过程在理论上是优选的。在这种情况下,尽管今天没有采用上面这些,但是可以发现原因在现有的等温或者接近等温的压缩机中具有太大的液压和动态损失。除了真空泵之外,这些真空泵实际上是具有高压差p2/p1的液体压缩机,但是具有很小的压力高度p2-p1。这些可以在液体环上以低圆周速度进行工作。在现有技术中的另一个问题是,在压缩期间容易连续地损失热量。在真空中,常常使用喷射器和水环式压缩机。喷射器在水射流中利用较大的速度,在这种水射流中,横截面进行膨胀并且与它一起拉另一种介质。喷射器把动态压力转换成静态压力。但是,喷射器系统在泵中、在喷嘴中由于撞击和摩擦而具有相对较高的损失。喷射器很少用于不是真空场的其它事物中。在现有技术中,水环式压缩机最接近本发明的压缩机。液体环式压缩机主要包括叶轮,该叶轮在外壳内与水环一起偏心地旋转,离心力使该环保持在周围的合适位置上。在正常情况下,入口设置成外壳的一个或者两个端壁上的开口,气体被吸入到叶轮的间隙中。相应地,把开口布置在压力侧上的端壁上,在那里,压缩气体被推出。所有这些可以具有静止的换向器,这些换向器布置在转子内的中央,在那里沿着径向产生进入和排出。液体环式压缩机不能以与喷射器相同的方式来转换水中的能量。水环中的静态压力保持不变。水环在转子的每个槽中起着活塞的作用。普通液体环式压缩机的原理示出在图2中,其中液体环23在静止外壳22内偏心地旋转,由转子21来驱动,在那里,位于叶轮之间的间隙在旋转的一侧上将吸入气体并且压缩另一侧上的气体。水环中的静态压力不得不与压缩压力相同,否则水被压出槽,即水环将变形。因此,假设具有一定的压力高度p2-p1,需要最小的离心力。液体环式压缩机常常具有明显更高的压力高度,因此与真空式泵相比,需要更高的旋转速度。传统水环式压缩机中的最大摩擦损失产生于转子接触外壳的壁的时候。空间一定得非常小,包括作用在外壳边缘上的水在内的一些东西具有与转子的叶轮端部相同的速度。此外,在转子的侧部和外壳之间一定是非常小的间隙。此外,在这些间隙中具有较大的摩擦。通常地,摩擦损失随着速度增加量的平方而提高,实际上,即使在相对较小的压力比时,水环式压缩机不受相对于绝热式压缩机的能量大小的约束。在没有这些摩擦损失的情况下,液体环式压缩机具有许多优点。它非常简单并且可以一步到达相对较大的压力比。明显的是,如果环绕着水环的外壳与这个一起进行旋转,那么液压摩擦损失将是最小的。因此,这种压缩机对于正常的压力比而言几乎在所有的地方可以利用等温能量的优点。早期建议公开了,通过外部的、旋转的气缸来解决摩擦问题,而这个不能导致切实可行的解决方案。美国专利5100300和美国专利5370502描述了具有气缸的液体环式压缩机,该气缸浮在位于气缸和外部静止外壳之间的液体或者气体膜上。借助浮在液体膜上,值得可疑的是,它是否能减少摩擦,并且通过气体它可能不会得到足够的支承能力和稳定性,以致气缸不能接触外壳。在以后的专利中,在同一公司的美国专利5395215中,它建议,把气缸支撑在外壳中,许多辊子被插入到外壳的壁中,在那里,气缸借助辊子来支撑。这个以实际的旋转速度好象是不能实现的,得到辊子。后续专利US5653582返回到流体作为旋转气缸的边缘支承并且建议基本解决方案。作为以前的申请,US5251593公开了,错综复杂的问题是相对于相互与气体的入口和排出口的静止通道相结合以得到偏心轴承。这个专利文献表明,外部旋转气缸支撑在一侧上,并且转子支撑在相对侧上,在那里,靠近转子的敞开端的静止板具有入口和出口的通道。这种设计主要具有两个明确的缺点。第一个是,这个方案给出了倒向一侧的轴承,在那里,轴承负荷变得不均匀并且太大。同时,产生了较大的轴向止推力。另一个缺点是。在外部旋转气缸和板之间难以得到明显的气体紧密封,在板那里,入口和出口通道设置在圆形板中,该圆形板嵌入到转子的开口端中。气体从槽到槽中产生向后泄漏,此外,通过位于静止板和转子之间的圆形间隙泄漏出来。出于实际目的,这个原理不能实现。尽管许多年来进行了研究和建议,但是明显地没有可能实现满足功能较好的要求的设计。因此,目前没有具有共同旋转的转子的液体环式压缩机。上面提及的文献表明,开始研究转子和连通器系统,与传统真空泵和压力相对较大的压缩机的这些相类似,但是速度具有上述限制。这个表现在相对较宽的转子在每侧上具有连通器,这导致轴承距离较长并且轴承负荷较大。在外部共转子中具有流体环的压缩机中,几何形状不合适,这导致轴承关系不适合于现有的轴承类型。通过每侧上的连通器,它借助间隙变成四个部分,在那里,在压力侧上,这些区域中具有泄漏。本发明的压缩机能够解决这些问题,这个问题公知为防止了水环式压缩机具有液体环的共转子的上述优点。另一目的是在整个压缩过程期间通过新的、非常有效地把液体直接喷射到气体中来实现几乎等温的压缩。作为喷射液体的水具有非常好的热性能,并且希望与允许这些的这些气体一起使用。但是,就泵和类似物而言,具有共转子的液体压缩机的设计需要在水和共转子的轴承之间具有明显的分开。从具有水喷射的螺旋式压缩机的发展来看,这是公知的,并且在螺旋的压力侧上进行密封具有一些问题。首先,水太小因此对密封几乎没有润滑效果,因此向着轴具有相对较大的压力并且磨损较大。此外,即使在最小的间隙中,水也容易穿过,尤其是高压下更是如此。下面明显的是,本发明的压缩机借助消除了这些问题的原因而解决了密封问题。上述目的通过附加权利要求中所限定出的本发明的液体环式压缩机来实现。现在,参照附图,借助例子来描述本发明,在这些附图中,图1示出了与压力关系无关的、具有理论能量需求量的图象,图2示意性地示出了水环式压缩机的原理,图3以分开的纵向视图示出了本发明的水环式压缩机,图4是图4的横截面,图5示出了作为安装好的、剖开的设计的压缩机,图6示出了转子的细节,图7a和7b示出了连通装置,及图8示出了共同转子的轴承、密封件和用来给轴承处的区域进行通风的系统的细节。图3中的主要零件包括两个外壳1和2、两个共同的转子3和4、转子6和转子轴5、连通装置7、共同转子3和4的两个轴承11、用于转子轴5的两个轴承12、及外部和内部轴承12的轴8和9。在图4中,沿着顺时针方向,具有吸入作用的扇形区I-II,压缩和喷射扇区II-III,和用于气体排出的扇形区。在扇形区II-III中,从连通器(communicator)中把液体直接喷射到转子槽中,并且压缩和冷却该槽中的气体。通过大量减少共转子的水环中的摩擦,可以使转子明显变窄,同时排出容积随着速度的明显增大而得到补偿。因此,水环中的内部压力增大了,并且压缩机可以以非常高的压力来输送。短转子从气体压力中几乎没有得到弯曲力,因此只在一端壁上固定到位于它轴上的法兰上,因此在转子的整个宽度上具有简单的连通器。然后,在连通器和转子之间只产生两个泄漏间隙。这些间隙只是这样的空间在该空间中,压力侧的泄漏可以找到空间。实际上它可以泄漏到间隙的两侧中,并且沿着从对着入口的压力排出的圆周,尤其是沿着旋转方向。即使这些间隙非常小,但是没有液体的纯气体通过该压力可以泄漏一个较大量,其结果是,输送量更小,并且效率更低。在向着连通器的内部上的转子6的表面在它的端部63处非常光滑,使通道开口62交织到每个独自的槽中。在图7a和7b中,它们示出了,连通器在相对侧部分上具有一排槽71。这些槽处于来自液体通道74的液体压力的作用下,该液体通道74沿着实际方向被阻塞以防止气体泄漏。本发明的液体环压缩机可以设置有共转子的水动力轴承。然后,这些通过用来喷射的相同液体来润滑和冷却。但是,通过具有需要的轴直径和速度的开始点,研究表明,在这种轴承中的摩擦损失非常高,并且共转子的一些优点失去了。随着压力更高,轴承尺寸大小进一步增大,并且它们中的损失变得更加不能接受。另一方面,相同关系对于相对较大的球轴承或者滚柱轴承而言仿佛是可以接受的,但同时导致轴承密封的新问题。具有成一体的密封件的轴承在接近所需要的速度时不能工作,并且没有任何允许这种情况的静态密封,或者将达到可接受的使用寿命。但是,迷宫式密封没有接触,并且可以以高速进行工作,但是不能产生任何静态密封。这些密封件假设在密封件上没有不同的压力。为了防止在轴承上产生不同的压力,因此使共转子(co-rotor)通过孔81通风到压缩机外壳中,如图8所示。对于空气压力压缩机而言,外壳本身与大气相通,或者借助压缩其它气体以防止排出,通风到入口中,因此在共转子的轴承上没有不同的压力。阻塞液体(该液体从位于连通器和转子之间的间隙中泄漏出来)在工作期间被投入到液体环中,并且不会到达共转子的轴承中。因此,这种设计在停止阶段只需要静态轴承密封,当水环由于缺少离心力而损坏时,明显具有使水飞溅到密封件上的危险。在传统的水环式压缩机中,以前公知的是,使用唇形密封,这个公开在US4747752中。但是,在这种情况下,它通过驱动轴来处理,该驱动轴具有相对较小的直径和较小的圆周速度。如上所述,共转子的速度关系相对于磨损来讲非常重要。这导致需要设计和完全新的唇密封件82,如图8中更加详细示出的一样,该图8以相对简单的方式解决了该问题。密封件与轴承11的外环一起进行旋转。唇部83相对容易变形,并且在停止时和在起动和停止循环时它靠在轴了并且进行静态密封,但是当产生速度和离心力时,它被向外投掷,并且产生了间隙sx,因此在工作期间它不能接触轴。这个示出在图8的横截面A和B中。明显地,在工作期间,唇部把它自己放置在共转子的开口的边缘和壁上,因此相对较小的运动使唇部从与轴相接开始进行弯曲,直到它不接触时为止。即使经常性地进行起动和停止,也几乎不会产生疲劳作用。换句话说,密封件在低速时是静态的,并且在高速时好像是动态的,它的目的只是防止轴承油脂被排出。共转子的轴承通过这个系统产生相同的周围关系和安全性,好象它们在空气中进行工作。转子轴承上的直径和转子之间的偏心度确定共转子的轴承轴线上的直径,因为所示出的转子的轴承被插入到这些中。转子轴承上的负荷变得与共转子的相同。为了承受这种负荷,在共转子的轴产生最小可能尺寸大小的同时,所谓的滚针轴承用于该转子中。使转子的轴承在共转子的轴上形成一体的目的和需要是得到尽可能短的轴承距离,该轴承距离产生了最小的轴直径。对于轴的轴承而言,圆周速度允许普通的静态密封件,并且该轴承可以借助机油来进行润滑。为了在转子61的槽中防止产生收集气体腔,因此图6所示的这些向着通道开口的向内呈圆形。沿着这个扇形部分中的连通器的边缘,在那里压缩可以找到位置,钻出许多孔75,这些孔与内部液体通道74相连通,该通道74的压力与压缩机的输送压力相同。通过这些孔,把液体直接喷射到转子的槽中。这些射流以较高的速度和步骤撞击在入口和槽的排出通道的边缘上,并且液体被喷射,因此它在槽内部被转变成液体雾。该雾被喷射到水环中,但是借助新射流来连续地更新,因此具有向外的流动。孔的密度向着压缩扇形区的端部增加,以补偿液体和气体之间的下降压力差。连通器被固定到共转子的静止轴8上。该轴使连通器的通道与气体和喷射液体的相应入口和排出口相连通。当本发明的压缩机用于不是空气的其它气体、如冷却气体或者用于石化设备中时,有利的是它可以使用液体相的实际气体来进行喷射并且作为液体环。与透平压缩机相比具有所期望的、相当低的能量需求,本发明的压缩机非常适合作为气体透平设备中的压缩机,该压缩机以相对较高的压力进行工作。实际上与透平压缩相反,来自这里的空气是冷的,但是需要注意透平压缩所输送的热量从涡轮的轴中取出并且相应地减少了输出作用,同时热空气不可能使热量从涡轮废气中进行回收。借助使用本发明的压缩机,来自压缩机的空气可以与废气进行热量交换,并且几乎可以得到与透平压缩机之后相同的温度。权利要求1.一种液体环式压缩机,其特征在于,偏心内转子(6)在轴(8、9)中支撑到液体环的外部共转子(3)中,共转子(11)的轴承位于外部中,每侧上的相同轴封闭在壳体中,它在轴承(11)的每侧上布置旋转唇部密封件(82),在低速时该唇部(83)邻接轴(8、9),在高速时,它由于离心力而伸出并且使它自己从轴中升起,通孔(81)通过共转子的侧壁并且支承外壳,它在液体环内的容积被通风到周围外壳(1)中,并且确保它在轴承和轴承的密封件上不产生压差。2.如权利要求1所述的压缩机,其特征在于,圆周上的转子(6)具有许多半圆柱形的槽(61),弧形转向中心。3.如权利要求1-2所述的压缩机,其特征在于,转子(6)的槽(61)在每侧上具有径向通道开口(62),它包围着圆形光滑部分(63)以密封静止转换器(7),该转换器设置在转子的中心。4.如权利要求1-3所述的压缩机,其特征在于,它从压缩弧形区中的连通器(7)中的孔(75)喷射液体,液体束压碎通道开口(62)的边缘以到达转子的槽(61)中。5.如权利要求1-4所述的压缩机,其特征在于,每侧上的转换器(7)具有边缘槽(71),喷射液体处于压力作用下并且防止气体泄漏。6.如权利要求1-5所述的压缩机,其特征在于,转换器(7)的边缘位于共轴子轴承密封件的外侧,因此来自位于转换器和转子之间的间隙中的泄漏水在液体环中被喷出,而不通过轴承密封件。7.如权利要求1-6所述的压缩机,其特征在于,共转子的轴承(11)是球轴承或者滚柱轴承。8.如权利要求1-6所述的压缩机,其特征在于,轴承(11)是包括水力型在内的滑动轴承。9.如权利要求1-8所述的压缩机的用途,它用作空气压缩机和水兼容的气体中,在这里水用作喷射液体。10.如权利要求1-9所述的压缩机的用途,它用作气体涡轮设备中的压缩机。全文摘要一种液体环式压缩机,其特征在于,偏心内转子(6)在轴(8、9)中支撑到液体环的外部共转子(3)中,共转子(11)的轴承位于外部中,每侧上的相同轴封闭在壳体中,它在轴承(11)的每侧上布置旋转唇部密封件(82),在低速时该唇部(83)邻接轴(8、9),在高速时,它由于离心力而伸出并且使它自己从轴中升起,通孔(81)通过共转子的侧壁并且支承外壳,液体环内的容积被通风到周围外壳(1)中,并且确保它在轴承和轴承的密封件上不产生压差。文档编号F04C29/04GK1656317SQ03812088 公开日2005年8月17日 申请日期2003年4月16日 优先权日2002年4月19日发明者希尔贝格·卡洛柳森 申请人:压缩机系统公司

本文地址:https://www.jishuxx.com/zhuanli/20240729/169790.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 YYfuon@163.com 举报,一经查实,本站将立刻删除。