技术新讯 > 航空航天装置制造技术 > 一种复合型智能安全飞行器的制作方法  >  正文

一种复合型智能安全飞行器的制作方法

  • 国知局
  • 2024-08-01 05:39:05

本发明涉及低空飞行器,具体指一种复合型智能安全飞行器。

背景技术:

1、 直升机虽然离人们的日常生活较为遥远,但直升机以其垂直升降、着陆方便,无需跑道等优点,为人们所熟悉。现有的单旋翼直升机都是由旋翼作为空气升力部件,它是由机身上的发动机通过传动机构提供动力给顶部的旋翼,由于是以机身为动力支点必然造成机身向旋翼旋转反方向的转动, 为了克服反扭矩问题就还得要有尾部平衡桨及复杂的传动机构来解决,这就造成现有直升机非常的笨重和复杂且不安全。多轴飞行器以其结构简单和超高的机动性近年来得到了热捧,但其安全性有待提高,全部或部分失去动力将出重大事故。

2、故现有技术尚有较大的改进空间。

技术实现思路

1、本发明的目的在于针对上述现有技术的缺陷和不足,提供一种结构紧凑,机动性强,且安全性高的复合型智能安全飞行器。

2、为了实现上述目的,本发明采用以下技术方案:

3、本发明所述的一种复合型智能安全飞行器,包括多轴模块和转动连接于所述多轴模块顶部的自带动力的主升力装置;由于主升力装置是自由转动连接于所述多轴模块顶部的,方便实现自旋。基于近年来电池、氢能和微型核能发电的发展,使该自带动力的结构飞行较长时间成为可能。主升力装置产生升力分三种情况:情况一:在自带动力的驱动下中旋翼和大旋翼快速互为反向转动产生升力,产生升力的原理似直升机;情况二:在所述复合型智能安全飞行器有一定前行速度的情况下,在前方来流的作用下大旋翼或/和中旋翼快速转动产生升力,原理同自转旋翼机;情况三:在下降时下方来流驱动大旋翼或/和中旋翼快速自旋产生升力,原理同自转旋翼机及迫降时的直升机。所述多轴模块包括多个小升力装置和飞行控制器;所述多轴模块主要用于飞行姿态控制,次要用于提供升力;该方式容易实现,飞行控制技术和电动力技术都比较成熟了,飞行控制器用于控制各小升力装置的转速,从而控制飞行器的横滚、俯仰、偏航、悬停、升降飞行姿态,原理类似传统的多旋翼无人机。所述主升力装置包括发动机、中旋翼和大旋翼,所述中旋翼固定连接于所述发动机的转子上,所述大旋翼直接或间接安装于所述发动机的定子上;所述大旋翼在所述发动机的反扭矩作用下转动,所述大旋翼的旋转方向与所述中旋翼的旋转方向相反;所述大旋翼的转速不大于所述中旋翼的转速;所述大旋翼和所述中旋翼呈上下间隔设置;这些结构无需设置复杂的减速装置,大旋翼能较快速度高升力运转,且方便大旋翼或/和中旋翼的自旋。所述大旋翼、所述中旋翼、所述小升力装置三者的直径关系满足以下任意一种:

4、a、所述大旋翼的直径>所述中旋翼的直径>所述小升力装置的直径;所述大旋翼的转速比所述中旋翼的转速慢;

5、b、所述大旋翼的直径=所述中旋翼的直径>所述小升力装置的直径;所述大旋翼的转速与所述中旋翼的转速基本相同,该方案无需设置挥舞铰;

6、c、所述大旋翼的直径>所述中旋翼的直径=所述小升力装置的直径。

7、根据以上技术方案,所述大旋翼的翼片的安装角为1.5°至5°之间。翼片的安装角即为翼片弦线与翼片旋转平面的夹角,翼片的前缘高于翼片的后缘时安装角为正,反之为负。这样设置,大旋翼的升阻比大,效率高,且容易实现自旋。本发明方案中所述大旋翼的翼片为正安装角。如果所述大旋翼的直径等于所述中旋翼的直径的话,中旋翼的翼片的安装角与大旋翼的翼片的安装角相等。

8、根据以上技术方案,所述中旋翼和所述大旋翼产生的向上的升力之和不小于所述多轴模块产生的向上的升力的两倍。所述多轴模块主要用来控制飞行姿态,由于所述多轴模块产生的升力较小,多个所述小升力装置故障时,该飞行器也不易“翻车”。

9、根据以上技术方案,所述大旋翼的旋转面与所述中旋翼的旋转面之间的净空距离不小于所述大旋翼的最大弦长的2倍;所述小升力装置的旋转面与所述大旋翼的旋转面之间的净空距离不小于所述大旋翼的最大弦长的2.5倍。这样设置确保所述大旋翼、所述中旋翼和所述小升力装置它们之间气流的相互干扰较小,有助于高效和安全。

10、根据以上技术方案,所述多轴模块为3轴6旋翼或4轴4旋翼或4轴8旋翼或6轴6旋翼或6轴12旋翼或8轴8旋翼或8轴16旋翼4轴4涵道风扇或6轴6涵道风扇或8轴8涵道风扇结构;驱动所述小升力装置的动力为无刷电机。这样设置成本低且技术成熟,稳定可靠,无刷电机、电子调速器、飞行控制器都可以用现有技术产品。小升力装置产生升力的部件采用旋翼或涵道风扇,各有优缺点,小升力装置所用的旋翼即常规多旋翼无人机的旋翼,结构简单,扭力大,航向控制时机动性强,但占空间大、受大旋翼和中旋翼的影响大,前行时阻力大,效率低,噪音大;小升力装置采用涵道风扇时,直径小,占空间小,受大旋翼和中旋翼的影响小,前行时阻力小,效率高,噪音小,但结构较复杂,扭力小,航向控制时机动性差,因反扭矩较小。

11、根据以上技术方案,所述发动机的油门发信端向所述发动机的油门执行端发送信号控制所述发动机的油门大小,从而控制所述发动机的转速,所述发动机的油门采用无线或有线控制;

12、采用无线控制时,在所述发动机的定子上安装无线接收器,在所述多轴模块上或与所述多轴模块连接但非旋转连接的部件上或地面站安装无线发射器,所述无线接收器与所述无线发射器无线电信号连接;

13、采用有线控制时,在所述发动机的定子与所述多轴模块之间安装多极导电滑环,所述多极导电滑环的转子安装在所述发动机的定子或所述多轴模块上,相对应地,所述多极导电滑环的定子安装在所述多轴模块或所述发动机的定子上;所述发动机的油门发信端安装在所述多轴模块上或与所述多轴模块连接但非旋转连接的的部件上;所述发动机的油门执行端与油门发信端通过所述多极导电滑环电信号连接。因为所述主升力装置与所述多轴模块是转动连接的,所述主升力装置在工作时是旋转的,需通过导电滑环来传输控制用电信号。所指的非旋转连接包括固定连接和只作一定角度偏转而不做一个圆周的转动的连接。

14、根据以上技术方案,所述发动机采用电动机,为所述发动机的供能装置为可充电电池、氢燃料电池和微型核电站三种中的一种或多种;所述的供能装置安装在与所述发动机定子固连的能源盒内。能源盒顶部设置了能源盒整流罩。基于电池、氢能和核能的高速发展,能量密度越来越大,动力小型化、强续航能力方便实现。

15、根据以上技术方案,所述主升力装置通过轴杆和轴承组合转动地安装在所述多轴模块上,所述发动机为上下中空结构,所述轴杆上下穿过所述发动机的中心孔;所述多轴模块的升力方向与所述中旋翼的升力方向一致。具体地,所述多轴模块中心处竖立一根轴杆,轴杆下端固定安装在所述多轴模块上,所述轴杆的上端通过深沟球轴承与所述主升力装置相连,所述主升力装置的整体能围绕所述轴杆自由旋转,所述主升力装置的旋转平面与所述轴杆垂直。

16、根据上述方案,所述发动机数量为2个,两个所述发动机分别布置于所述大旋翼的上方和下方;所述中旋翼数量也为2个,分别固定安装于2个所述发动机的转子上,所述大旋翼为一个,两个所述发动机的定子均与所述大旋翼连接;两个所述发动机的转子共轴布置,两个所述中旋翼的旋转面相互平行。这样设置属主动力分散布置,两个小发动机与一个大发动机比较效率高些,价格低些,且安全系数高些。

17、根据上述方案,所述大旋翼与所述发动机的定子之间设置了挥舞铰组件。设置挥舞铰组件的目的是克服巡航时前行大旋翼翼片和后行大旋翼翼片升力不平衡的缺陷,减小抖动,有利于高速稳定飞行。需要说明的是:如果飞行器只用于慢速巡航的话可不设置挥舞铰组件,所述多轴模块可以进行补偿,所述大旋翼不设置挥舞铰组件的话效率会高些。

18、根据以上技术方案,所述大旋翼的翼片数量为两个,所述大旋翼通过跷跷板形式的挥舞铰组件安装在所述发动机的定子上。跷跷板形式的挥舞铰,结构简单。挥舞铰组件包括跷跷板和跷跷板转轴,两个所述大旋翼安装在跷跷板的两端,所述大旋翼能围绕销轴转摆一定角度。

19、根据以上技术方案,还包括机舱。机舱有两种设置方案:机舱设置在所述多轴模块中部,与所述多轴模块融为一体,内配电池、飞控、导航系统;或者,机舱设置在所述多轴模块下方。

20、所述多轴模块通过活动铰组件铰接于所述机舱的顶部,相对所述机舱而言,所述多轴模块和所述主升力装置能前后俯仰和左右偏转。活动铰组件包括两根相互垂直布置的销轴,分别是横向(左右方向)布置的俯仰销轴和纵向(前后方向)布置的横滚销轴。

21、还设置了操纵机构,所述的操纵机构包括操纵杆和推拉杆,所述推拉杆的上端与所述多轴模块相连,所述推拉杆的下端与所述操纵杆相连,所述的操纵杆置于所述机舱内的驾驶舱中。驾驶员通过操纵机构操控飞行器横滚和俯仰飞行姿态,也能通过所述多轴模块上的飞行控制器操控飞行器的飞行姿态。

22、所述机舱上还设置了前行动力装置,能大大提高巡航速度。前行动力装置采用油动或电动形式,采用油动的巡航时间长,采用电动的环保。前行动力装置可采用传统飞机或自转旋翼机的发动机系统。高速飞行时,让大旋翼保持水平或小正迎角飞行,这样前飞时阻力小效率高。

23、所述机舱尾部设置了垂直尾翼。以利航向控制,尤其在所述多轴模块出现故障迫降时能关键作用。

24、所述多轴模块的尾部设置水平尾翼。所述水平尾翼通过尾杆设置于所述多轴模块的尾部。所述水平尾翼包括水平安定面和俯仰舵。以利俯仰控制,尤其是高速前飞时使所述轴杆保持竖直状态,使所述大旋翼和多轴模块基本水平阻力小效率高。由飞行控制器配合模式转换成只让所述前行动力装置提供向前的动力,所述的主升力装置和所述多轴模块基本上只提供向上的升力。也为迫降时方便俯仰操控。

25、所述多轴模块中的小升力装置由电机驱动,为所述多轴模块供电的电池设置在所述活动铰组件的下方的电池盒中,所述电池盒通过吊杆与所述多轴模块固连。吊杆包括左吊杆和右吊杆。装有电池的所述电池盒还作配重用,使得活动铰组件上方和下方的构件偏转时作用于活动铰组件上的力矩基本相等,操控所述主升力装置前后俯仰和左右偏转时能很省力。

26、本发明有益效果为:本发明主方案由于自带动力的主升力装置转动地安装于飞行器的顶部,方便自旋,效率高且安全系数高;所述多轴模块主要用于飞行姿态控制,机动性强。本发明从属方案的优点包括:结构紧凑;双操控系统,人工操控和飞控操控相结合相补充,机动性更强更安全;结合前行动力装置和垂尾、平尾配合,巡航能力强,且高效;采用装有电池的所述电池盒作配重,使操控更方便、省力。

本文地址:https://www.jishuxx.com/zhuanli/20240722/220842.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 YYfuon@163.com 举报,一经查实,本站将立刻删除。